IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6199-d284081.html
   My bibliography  Save this article

Electrical Power Characteristics and Economic Analysis of Distributed Generation System Using Renewable Energy: Applied to Iron and Steel Plants

Author

Listed:
  • Hee-Kwan Shin

    (KEPCO (Korea Electrical Power Company), R&D Department, 211 Moonwha-ro, Najoo 58326, Korea
    Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea)

  • Jae-Min Cho

    (Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea)

  • Eul-Bum Lee

    (Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea
    Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Ku, Pohang 37673, Korea)

Abstract

The intention of this paper is to respond to the increase in electric power demand and global environmental issues in iron and steel plants. In particular, the authors studied the characteristics of the power flow from a distributed generation (DG) system connected to the electrical power system of a steel plant. In addition, the authors carried out an economic analysis of the DG system by calculating the capital investment cost that could convert the profit of the DG into a certain profit. The research was conducted based on the power system configuration and basic data of a steel plant in operation in Korea. To analyze the unconnected DG of the power system, a transmission voltage target was set, and the voltage characteristics of 22.9 and 6.6 kV systems were analyzed. The authors analyzed the connected DG system in terms of the effect of link location, power factor, and output power by case. The authors also studied the power loss variation in the output power of a DG system. Various simulations with MATLAB software and NPV (Net Present Value) and IRR (Internal Rate of Return) methods were run in an economic analysis to compare the case of not introducing an energy storage system (ESS), and the case of introducing an ESS in terms of comprehensive energy utilization. The results of the economic analysis indicated that the scenario with ESS is more economically advantageous, resulting from the peak power reduction effect and the evasion cost due to the elimination of the power generation operation of the peak load. Developed countries have established best available technology (BAT) standards and developed related practices to apply them to industrial plants, actively preparing for environmental issues in the future. In Korea and in some other countries, the application of distributed generation in conjunction with the steel plant sector will be effective for improving energy efficiency and responding to environmental issues.

Suggested Citation

  • Hee-Kwan Shin & Jae-Min Cho & Eul-Bum Lee, 2019. "Electrical Power Characteristics and Economic Analysis of Distributed Generation System Using Renewable Energy: Applied to Iron and Steel Plants," Sustainability, MDPI, vol. 11(22), pages 1-27, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6199-:d:284081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Audenaert, Amaryllis & De Boeck, Liesje & De Cleyn, Sven & Lizin, Sebastien & Adam, Jean-François, 2010. "An economic evaluation of photovoltaic grid connected systems (PVGCS) in Flanders for companies: A generic model," Renewable Energy, Elsevier, vol. 35(12), pages 2674-2682.
    2. Muttaqi, K.M. & Le, An D.T. & Aghaei, J. & Mahboubi-Moghaddam, E. & Negnevitsky, M. & Ledwich, G., 2016. "Optimizing distributed generation parameters through economic feasibility assessment," Applied Energy, Elsevier, vol. 165(C), pages 893-903.
    3. Bergek, Anna & Mignon, Ingrid & Sundberg, Gunnel, 2013. "Who invests in renewable electricity production? Empirical evidence and suggestions for further research," Energy Policy, Elsevier, vol. 56(C), pages 568-581.
    4. Ren, Guorui & Wan, Jie & Liu, Jinfu & Yu, Daren & Söder, Lennart, 2018. "Analysis of wind power intermittency based on historical wind power data," Energy, Elsevier, vol. 150(C), pages 482-492.
    5. Audenaert, Amaryllis & De Boeck, Liesje & De Cleyn, Sven & Lizin, Sebastien & Adam, Jean-Franois, 2010. "An economic evaluation of photovoltaic grid connected systems (PVGCS) in Flanders for companies: a generic model," Working Papers 2010/16, Hogeschool-Universiteit Brussel, Faculteit Economie en Management.
    6. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2006. "Economical and environmental analysis of grid connected photovoltaic systems in Spain," Renewable Energy, Elsevier, vol. 31(8), pages 1107-1128.
    7. Yu-Cheol Jeong & Eul-Bum Lee & Douglas Alleman, 2019. "Reducing Voltage Volatility with Step Voltage Regulators: A Life-Cycle Cost Analysis of Korean Solar Photovoltaic Distributed Generation," Energies, MDPI, vol. 12(4), pages 1-16, February.
    8. Yang-Kon Kim & Eul-Bum Lee, 2018. "Optimization Simulation, Using Steel Plant Off-Gas for Power Generation: A Life-Cycle Cost Analysis Approach," Energies, MDPI, vol. 11(11), pages 1-17, October.
    9. Rezaee Jordehi, Ahmad, 2016. "Allocation of distributed generation units in electric power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 893-905.
    10. Allan, Grant & Eromenko, Igor & Gilmartin, Michelle & Kockar, Ivana & McGregor, Peter, 2015. "The economics of distributed energy generation: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 543-556.
    11. Saygin, D. & Patel, M.K. & Worrell, E. & Tam, C. & Gielen, D.J., 2011. "Potential of best practice technology to improve energy efficiency in the global chemical and petrochemical sector," Energy, Elsevier, vol. 36(9), pages 5779-5790.
    12. Chul-Seung Hong & Eul-Bum Lee, 2018. "Power Plant Economic Analysis: Maximizing Lifecycle Profitability by Simulating Preliminary Design Solutions of Steam-Cycle Conditions," Energies, MDPI, vol. 11(9), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaolong Hao & Cen Cao & Sheng Yu & Xiaohu Sun & Min Feng & Wang Luo & Zhiqiang Xu & Hui Xiao, 2023. "Emergency Decision Making for Electric Power Personal Accidents Based on Ontology and Case-Based Reasoning," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    2. Laetitia Uwineza & Hyun-Goo Kim & Jan Kleissl & Chang Ki Kim, 2022. "Technical Control and Optimal Dispatch Strategy for a Hybrid Energy System," Energies, MDPI, vol. 15(8), pages 1-19, April.
    3. Ciprian Mihai Coman & Adriana Florescu & Constantin Daniel Oancea, 2020. "Improving the Efficiency and Sustainability of Power Systems Using Distributed Power Factor Correction Methods," Sustainability, MDPI, vol. 12(8), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Cheol Jeong & Eul-Bum Lee & Douglas Alleman, 2019. "Reducing Voltage Volatility with Step Voltage Regulators: A Life-Cycle Cost Analysis of Korean Solar Photovoltaic Distributed Generation," Energies, MDPI, vol. 12(4), pages 1-16, February.
    2. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    3. Allan, Grant & Eromenko, Igor & Gilmartin, Michelle & Kockar, Ivana & McGregor, Peter, 2015. "The economics of distributed energy generation: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 543-556.
    4. Peprah, Forson & Gyamfi, Samuel & Effah-Donyina, Eric & Amo-Boateng, Mark, 2023. "The pathway for electricity prosumption in Ghana," Energy Policy, Elsevier, vol. 177(C).
    5. Wang, Yue & Das, Ridoy & Putrus, Ghanim & Kotter, Richard, 2020. "Economic evaluation of photovoltaic and energy storage technologies for future domestic energy systems – A case study of the UK," Energy, Elsevier, vol. 203(C).
    6. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    7. Olivier De Groote & Frank Verboven, 2016. "Subsidies and myopia in technology adoption: evidence from solar photovoltaic systems," Working Papers of Department of Economics, Leuven 547933, KU Leuven, Faculty of Economics and Business (FEB), Department of Economics, Leuven.
    8. Olivier De Groote & Frank Verboven, 2019. "Subsidies and Time Discounting in New Technology Adoption: Evidence from Solar Photovoltaic Systems," American Economic Review, American Economic Association, vol. 109(6), pages 2137-2172, June.
    9. Attia, Ahmed M. & Al Hanbali, Ahmad & Saleh, Haitham H. & Alsawafy, Omar G. & Ghaithan, Ahmed M. & Mohammed, Awsan, 2021. "A multi-objective optimization model for sizing decisions of a grid-connected photovoltaic system," Energy, Elsevier, vol. 229(C).
    10. Rodrigues, Sandy & Chen, Xiaoju & Morgado-Dias, F., 2017. "Economic analysis of photovoltaic systems for the residential market under China's new regulation," Energy Policy, Elsevier, vol. 101(C), pages 467-472.
    11. Lizin, Sebastien & Leroy, Julie & Delvenne, Catherine & Dijk, Marc & De Schepper, Ellen & Van Passel, Steven, 2013. "A patent landscape analysis for organic photovoltaic solar cells: Identifying the technology's development phase," Renewable Energy, Elsevier, vol. 57(C), pages 5-11.
    12. Zografidou, Eleni & Petridis, Konstantinos & Petridis, Nikolaos E. & Arabatzis, Garyfallos, 2017. "A financial approach to renewable energy production in Greece using goal programming," Renewable Energy, Elsevier, vol. 108(C), pages 37-51.
    13. Zubo, Rana.H.A. & Mokryani, Geev & Rajamani, Haile-Selassie & Aghaei, Jamshid & Niknam, Taher & Pillai, Prashant, 2017. "Operation and planning of distribution networks with integration of renewable distributed generators considering uncertainties: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1177-1198.
    14. Sandy Rodrigues & Fábio Faria & Ashkan Ivaki & Nuno Cafôfo & Xiaoju Chen 5 & F. Morgado-Dias, 2016. "Tesla Powerwall in the United States and Portugal–A Comparative Analysis on the Use of Storage with Small Scale Photovoltaic Systems," International Journal of Technology and Engineering Studies, PROF.IR.DR.Mohid Jailani Mohd Nor, vol. 2(1), pages 5-12.
    15. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    16. Beliën, Jeroen & De Boeck, Liesje & Colpaert, Jan & Cooman, Gert, 2013. "The best time to invest in photovoltaic panels in Flanders," Renewable Energy, Elsevier, vol. 50(C), pages 348-358.
    17. Twaha, Ssennoga & Idris, Mohd Hafizi & Anwari, Makbul & Khairuddin, Azhar, 2012. "Applying grid-connected photovoltaic system as alternative source of electricity to supplement hydro power instead of using diesel in Uganda," Energy, Elsevier, vol. 37(1), pages 185-194.
    18. José de Castro Vieira, Samuel & Tapia Carpio, Lucio Guido, 2020. "The economic impact on residential fees associated with the expansion of grid-connected solar photovoltaic generators in Brazil," Renewable Energy, Elsevier, vol. 159(C), pages 1084-1098.
    19. Dong-Jin Cho & Eul-Bum Lee & Jae-Min Cho & Douglas Alleman, 2019. "Reducing the Superheating of Extraction Stream on Advanced-Ultra Super Critical Power Plants with Regenerative Turbines in South Korea: An Economic Analysis," Energies, MDPI, vol. 12(9), pages 1-22, May.
    20. Bauwens, Thomas, 2019. "Analyzing the determinants of the size of investments by community renewable energy members: Findings and policy implications from Flanders," Energy Policy, Elsevier, vol. 129(C), pages 841-852.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6199-:d:284081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.