IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5052-d860483.html
   My bibliography  Save this article

Safety Assessment for External Short Circuit of Li-Ion Battery in ESS Application Based on Operation and Environment Factors

Author

Listed:
  • Jae-Beom Jung

    (Department of Electrical Engineering, Korea University of Technology & Education (KUT), Cheonan-si 31253, Chungcheongnam-do, Korea
    Korea Testing Laboratory, 112 Jiksanro, Seobukgu, Cheonan-si 31253, Chungcheongnam-do, Korea)

  • Min-Gyu Lim

    (Korea Testing Laboratory, 112 Jiksanro, Seobukgu, Cheonan-si 31253, Chungcheongnam-do, Korea)

  • Jin-Yong Kim

    (Korea Testing Laboratory, 112 Jiksanro, Seobukgu, Cheonan-si 31253, Chungcheongnam-do, Korea)

  • Byeong-Gill Han

    (Department of Electrical Engineering, Korea University of Technology & Education (KUT), Cheonan-si 31253, Chungcheongnam-do, Korea)

  • ByungKi Kim

    (Korea Institute of Energy Research, 200, Haemajihaean-ro, Gujwa-eup, Jeju-si 63357, Jeju-do, Korea)

  • Dae-Seok Rho

    (Department of Electrical Engineering, Korea University of Technology & Education (KUT), Cheonan-si 31253, Chungcheongnam-do, Korea)

Abstract

In recent years, the demand for medium and large secondary batteries in EV (electric vehicle) and ESS (energy storage systems) applications has been rapidly increasing worldwide, and accordingly, the market size is increasing exponentially. However, the recent fire accidents related to secondary batteries for EVs and ESS are having a negative impact on the battery market. Therefore, this paper implements an accident simulation device to perform an external short-circuit test, one of the typical safety tests for NMC-series prismatic and pouch-type batteries that are widely used among battery cells used in medium and large secondary batteries. The implemented accident simulation device for the external short-circuit test is composed of short-circuit resistance, measuring device, control device, etc., and is configured to analyze external short-circuit characteristics according to various test conditions. Based on this, an external short-circuit test according to the type, short-circuit resistance and SOC (states of charge) of the lithium-ion battery was performed to confirm the current and temperature characteristics according to each condition. As a result of performing an external short-circuit test for each protection device in the battery module and preprocessing temperature, it is certain that the module fuse operates over 120 times faster than the cell fuse based on the same SOC conditions, and the quantity of electric charge in the module fuse is over 110 times smaller than of the cell fuse in the case of a short-circuit fault. It is also found that the highest and lowest preprocessing temperatures are considered to be severe conditions. Based on the proposed mechanism of an external short circuit in a Li-ion battery and the test device for the external short circuit, it is confirmed that this paper can contribute to the safety assessment of Li-ion battery-based ESS.

Suggested Citation

  • Jae-Beom Jung & Min-Gyu Lim & Jin-Yong Kim & Byeong-Gill Han & ByungKi Kim & Dae-Seok Rho, 2022. "Safety Assessment for External Short Circuit of Li-Ion Battery in ESS Application Based on Operation and Environment Factors," Energies, MDPI, vol. 15(14), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5052-:d:860483
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5052/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5052/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Zeyu & Xiong, Rui & Lu, Jiahuan & Li, Xinggang, 2018. "Temperature rise prediction of lithium-ion battery suffering external short circuit for all-climate electric vehicles application," Applied Energy, Elsevier, vol. 213(C), pages 375-383.
    2. Zhenhai Gao & Xiaoting Zhang & Yang Xiao & Hao Gao & Huiyuan Wang & Changhao Piao, 2019. "Influence of Low-Temperature Charge on the Mechanical Integrity Behavior of 18650 Lithium-Ion Battery Cells Subject to Lateral Compression," Energies, MDPI, vol. 12(5), pages 1-17, February.
    3. Holger C. Hesse & Michael Schimpe & Daniel Kucevic & Andreas Jossen, 2017. "Lithium-Ion Battery Storage for the Grid—A Review of Stationary Battery Storage System Design Tailored for Applications in Modern Power Grids," Energies, MDPI, vol. 10(12), pages 1-42, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min-Gyu Lim & Jae-Beom Jung & Nam-Hyun Kim & Ji-Myung Kim & Jian Shen & Dae-Seok Rho, 2023. "Evaluation Method of Internal Resistance for Repurposing Using Middle and Large-Sized Batteries," Energies, MDPI, vol. 16(15), pages 1-14, July.
    2. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    3. Luna, M. & Di Piazza, M.C. & La Tona, G. & Accetta, A. & Pucci, M., 2021. "Exploiting dynamic modeling, parameter identification, and power electronics to implement a non-dissipative Li-ion battery hardware emulator," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 48-65.
    4. Ghorbanzadeh, Milad & Astaneh, Majid & Golzar, Farzin, 2019. "Long-term degradation based analysis for lithium-ion batteries in off-grid wind-battery renewable energy systems," Energy, Elsevier, vol. 166(C), pages 1194-1206.
    5. Parlikar, Anupam & Truong, Cong Nam & Jossen, Andreas & Hesse, Holger, 2021. "The carbon footprint of island grids with lithium-ion battery systems: An analysis based on levelized emissions of energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Li, Shuangqi & Zhao, Pengfei & Gu, Chenghong & Huo, Da & Zeng, Xianwu & Pei, Xiaoze & Cheng, Shuang & Li, Jianwei, 2022. "Online battery-protective vehicle to grid behavior management," Energy, Elsevier, vol. 243(C).
    7. Parlikar, Anupam & Schott, Maximilian & Godse, Ketaki & Kucevic, Daniel & Jossen, Andreas & Hesse, Holger, 2023. "High-power electric vehicle charging: Low-carbon grid integration pathways with stationary lithium-ion battery systems and renewable generation," Applied Energy, Elsevier, vol. 333(C).
    8. Yang, Ruixin & Xiong, Rui & Ma, Suxiao & Lin, Xinfan, 2020. "Characterization of external short circuit faults in electric vehicle Li-ion battery packs and prediction using artificial neural networks," Applied Energy, Elsevier, vol. 260(C).
    9. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).
    10. Xinwei Cong & Caiping Zhang & Jiuchun Jiang & Weige Zhang & Yan Jiang & Linjing Zhang, 2021. "A Comprehensive Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 14(5), pages 1-21, February.
    11. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    12. Dorota Brzezińska, 2018. "Ventilation System Influence on Hydrogen Explosion Hazards in Industrial Lead-Acid Battery Rooms," Energies, MDPI, vol. 11(8), pages 1-11, August.
    13. Chen, Zeyu & Zhang, Bo & Xiong, Rui & Shen, Weixiang & Yu, Quanqing, 2021. "Electro-thermal coupling model of lithium-ion batteries under external short circuit," Applied Energy, Elsevier, vol. 293(C).
    14. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Farrell, Troy W. & Tran, Ngoc Tham & Teague, Joseph, 2019. "Development of a degradation-conscious physics-based lithium-ion battery model for use in power system planning studies," Applied Energy, Elsevier, vol. 248(C), pages 512-525.
    15. Giuliano Rancilio & Alexandre Lucas & Evangelos Kotsakis & Gianluca Fulli & Marco Merlo & Maurizio Delfanti & Marcelo Masera, 2019. "Modeling a Large-Scale Battery Energy Storage System for Power Grid Application Analysis," Energies, MDPI, vol. 12(17), pages 1-26, August.
    16. Förster, Robert & Kaiser, Matthias & Wenninger, Simon, 2023. "Future vehicle energy supply - sustainable design and operation of hybrid hydrogen and electric microgrids," Applied Energy, Elsevier, vol. 334(C).
    17. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    18. Edoardo De Din & Fabian Bigalke & Marco Pau & Ferdinanda Ponci & Antonello Monti, 2021. "Analysis of a Multi-Timescale Framework for the Voltage Control of Active Distribution Grids," Energies, MDPI, vol. 14(7), pages 1-23, April.
    19. Wu, Di & Ma, Xu & Balducci, Patrick & Bhatnagar, Dhruv, 2021. "An economic assessment of behind-the-meter photovoltaics paired with batteries on the Hawaiian Islands," Applied Energy, Elsevier, vol. 286(C).
    20. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Xiong, Binyu & Tang, Jinrui & Su, Yixin & Wang, Yu, 2020. "Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5052-:d:860483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.