IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i14p5017-d859037.html
   My bibliography  Save this article

Techno-Economic Assessment of the Integration of Direct Air Capture and the Production of Solar Fuels

Author

Listed:
  • Enric Prats-Salvado

    (German Aerospace Center (DLR), Institute of Future Fuels, 51147 Cologne, Germany
    Faculty of Mechanical Science and Engineering, Institute of Power Engineering, Solar Fuel Production, Technische Universität Dresden, 01062 Dresden, Germany)

  • Nathalie Monnerie

    (German Aerospace Center (DLR), Institute of Future Fuels, 51147 Cologne, Germany)

  • Christian Sattler

    (German Aerospace Center (DLR), Institute of Future Fuels, 51147 Cologne, Germany
    Faculty of Mechanical Science and Engineering, Institute of Power Engineering, Solar Fuel Production, Technische Universität Dresden, 01062 Dresden, Germany)

Abstract

Non-abatable emissions are one of the decarbonization challenges that could be addressed with carbon-neutral fuels. One promising production pathway is the direct air capture (DAC) of carbon dioxide, followed by a solar thermochemical cycle and liquid fuel synthesis. In this study, we explore different combinations of these technologies to produce methanol from an economic perspective in order to determine the most efficient one. For this purpose, a model is built and simulated in Aspen Plus ® , and a solar field is designed and sized with HFLCAL ® . The inherent dynamics of solar irradiation were considered with the meteorological data from Meteonorm ® at the chosen location (Riyadh, Saudi Arabia). Four different integration strategies are assessed by determining the minimum selling price of methanol for each technology combination. These values were compared against a baseline with no synergies between the DAC and the solar fuels production. The results show that the most economical methanol is produced with a central low-temperature DAC unit that consumes the low-quality waste heat of the downstream process. Additionally, it is determined with a sensitivity analysis that the optimal annual production of methanol is 11.8 kt/y for a solar field with a design thermal output of 280 MW.

Suggested Citation

  • Enric Prats-Salvado & Nathalie Monnerie & Christian Sattler, 2022. "Techno-Economic Assessment of the Integration of Direct Air Capture and the Production of Solar Fuels," Energies, MDPI, vol. 15(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5017-:d:859037
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/14/5017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/14/5017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdullah Kaya & M. Evren Tok & Muammer Koc, 2019. "A Levelized Cost Analysis for Solar-Energy-Powered Sea Water Desalination in The Emirate of Abu Dhabi," Sustainability, MDPI, vol. 11(6), pages 1-18, March.
    2. Kavya Madhu & Stefan Pauliuk & Sumukha Dhathri & Felix Creutzig, 2021. "Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment," Nature Energy, Nature, vol. 6(11), pages 1035-1044, November.
    3. Mahdi Fasihi & Dmitrii Bogdanov & Christian Breyer, 2017. "Long-Term Hydrocarbon Trade Options for the Maghreb Region and Europe—Renewable Energy Based Synthetic Fuels for a Net Zero Emissions World," Sustainability, MDPI, vol. 9(2), pages 1-24, February.
    4. James T. Hinkley, 2021. "A New Zealand Perspective on Hydrogen as an Export Commodity: Timing of Market Development and an Energy Assessment of Hydrogen Carriers," Energies, MDPI, vol. 14(16), pages 1-15, August.
    5. Enric Prats-Salvado & Nathalie Monnerie & Christian Sattler, 2021. "Synergies between Direct Air Capture Technologies and Solar Thermochemical Cycles in the Production of Methanol," Energies, MDPI, vol. 14(16), pages 1-21, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    2. Christian Breyer & Mahdi Fasihi & Arman Aghahosseini, 2020. "Carbon dioxide direct air capture for effective climate change mitigation based on renewable electricity: a new type of energy system sector coupling," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(1), pages 43-65, January.
    3. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    4. Ying Zhao & Yani Bao & Wai Ling Lee, 2019. "Barriers to Adoption of Water-Saving Habits in Residential Buildings in Hong Kong," Sustainability, MDPI, vol. 11(7), pages 1-13, April.
    5. Christopher G. F. Bataille, 2020. "Physical and policy pathways to net‐zero emissions industry," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    6. George Kyriakarakos & George Papadakis & Christos A. Karavitis, 2022. "Renewable Energy Desalination for Island Communities: Status and Future Prospects in Greece," Sustainability, MDPI, vol. 14(13), pages 1-23, July.
    7. Child, Michael & Koskinen, Otto & Linnanen, Lassi & Breyer, Christian, 2018. "Sustainability guardrails for energy scenarios of the global energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 321-334.
    8. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    9. Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).
    10. An, Keju & Farooqui, Azharuddin & McCoy, Sean T., 2022. "The impact of climate on solvent-based direct air capture systems," Applied Energy, Elsevier, vol. 325(C).
    11. Galimova, Tansu & Satymov, Rasul & Keiner, Dominik & Breyer, Christian, 2024. "Sustainable energy transition of Greenland and its prospects as a potential Arctic e-fuel and e-chemical export hub for Europe and East Asia," Energy, Elsevier, vol. 286(C).
    12. Keiner, Dominik & Salcedo-Puerto, Orlando & Immonen, Ekaterina & van Sark, Wilfried G.J.H.M. & Nizam, Yoosuf & Shadiya, Fathmath & Duval, Justine & Delahaye, Timur & Gulagi, Ashish & Breyer, Christian, 2022. "Powering an island energy system by offshore floating technologies towards 100% renewables: A case for the Maldives," Applied Energy, Elsevier, vol. 308(C).
    13. Li, Chen & Mogollón, José M. & Tukker, Arnold & Dong, Jianning & von Terzi, Dominic & Zhang, Chunbo & Steubing, Bernhard, 2022. "Future material requirements for global sustainable offshore wind energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    14. Farajiamiri, Mina & Meyer, Jörn-Christian & Walther, Grit, 2023. "Multi-objective optimization of renewable fuel supply chains regarding cost, land use, and water use," Applied Energy, Elsevier, vol. 349(C).
    15. Zhang, Chen & Zhang, Xinqi & Su, Tingyu & Zhang, Yiheng & Wang, Liwei & Zhu, Xuancan, 2023. "Modification schemes of efficient sorbents for trace CO2 capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    16. Rocio Gonzalez Sanchez & Anatoli Chatzipanagi & Georgia Kakoulaki & Marco Buffi & Sandor Szabo, 2023. "The Role of Direct Air Capture in EU’s Decarbonisation and Associated Carbon Intensity for Synthetic Fuels Production," Energies, MDPI, vol. 16(9), pages 1-28, May.
    17. Runge, Philipp & Sölch, Christian & Albert, Jakob & Wasserscheid, Peter & Zöttl, Gregor & Grimm, Veronika, 2019. "Economic comparison of different electric fuels for energy scenarios in 2035," Applied Energy, Elsevier, vol. 233, pages 1078-1093.
    18. Müller, Viktor Paul & Eichhammer, Wolfgang, 2023. "Economic complexity of green hydrogen production technologies - a trade data-based analysis of country-specific industrial preconditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    19. Motlaghzadeh, Kasra & Schweizer, Vanessa & Craik, Neil & Moreno-Cruz, Juan, 2023. "Key uncertainties behind global projections of direct air capture deployment," Applied Energy, Elsevier, vol. 348(C).
    20. Muna Hindiyeh & Aiman Albatayneh & Rashed Altarawneh & Mustafa Jaradat & Murad Al-Omary & Qasem Abdelal & Tarek Tayara & Osama Khalil & Adel Juaidi & Ramez Abdallah & Partick Dutournié & Mejdi Jeguiri, 2021. "Sea Level Rise Mitigation by Global Sea Water Desalination Using Renewable-Energy-Powered Plants," Sustainability, MDPI, vol. 13(17), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5017-:d:859037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.