IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i9p3881-d1138804.html
   My bibliography  Save this article

The Role of Direct Air Capture in EU’s Decarbonisation and Associated Carbon Intensity for Synthetic Fuels Production

Author

Listed:
  • Rocio Gonzalez Sanchez

    (European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy)

  • Anatoli Chatzipanagi

    (European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy)

  • Georgia Kakoulaki

    (European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy)

  • Marco Buffi

    (European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy)

  • Sandor Szabo

    (European Commission, Joint Research Centre (JRC), Via E. Fermi 2749, 21027 Ispra, Italy)

Abstract

Direct air capture (DAC) is considered one of the mitigation strategies in most of the future scenarios trying to limit global temperature to 1.5 °C. Given the high expectations placed on DAC for future decarbonisation, this study presents an extensive review of DAC technologies, exploring a number of techno-economic aspects, including an updated collection of the current and planned DAC projects around the world. A dedicated analysis focused on the production of synthetic methane, methanol, and diesel from DAC and electrolytic hydrogen in the European Union (EU) is also performed, where the carbon footprint is analysed for different scenarios and energy sources. The results show that the maximum grid carbon intensity to obtain negative emissions with DAC is estimated at 468 gCO 2 e/kWh, which is compliant with most of the EU countries’ current grid mix. Using only photovoltaics (PV) and wind, negative emissions of at least −0.81 tCO 2 e/tCO 2 captured can be achieved. The maximum grid intensities allowing a reduction of the synthetic fuels carbon footprint compared with their fossil-fuels counterparts range between 96 and 151 gCO 2 e/kWh. However, to comply with the Renewable Energy Directive II (REDII) sustainability criteria to produce renewable fuels of non-biological origin, the maximum stays between 30.2 to 38.8 gCO 2 e/kWh. Only when using PV and wind is the EU average able to comply with the REDII threshold for all scenarios and fuels, with fuel emissions ranging from 19.3 to 25.8 gCO 2 e/MJ. These results highlight the importance of using renewable energies for the production of synthetic fuels compliant with the EU regulations that can help reduce emissions from difficult-to-decarbonise sectors.

Suggested Citation

  • Rocio Gonzalez Sanchez & Anatoli Chatzipanagi & Georgia Kakoulaki & Marco Buffi & Sandor Szabo, 2023. "The Role of Direct Air Capture in EU’s Decarbonisation and Associated Carbon Intensity for Synthetic Fuels Production," Energies, MDPI, vol. 16(9), pages 1-28, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3881-:d:1138804
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/9/3881/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/9/3881/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bos, M.J. & Kersten, S.R.A. & Brilman, D.W.F., 2020. "Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture," Applied Energy, Elsevier, vol. 264(C).
    2. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    3. Giulia Realmonte & Laurent Drouet & Ajay Gambhir & James Glynn & Adam Hawkes & Alexandre C. Köberle & Massimo Tavoni, 2020. "Reply to “High energy and materials requirement for direct air capture calls for further analysis and R&D”," Nature Communications, Nature, vol. 11(1), pages 1-2, December.
    4. Azarabadi, Habib & Lackner, Klaus S., 2019. "A sorbent-focused techno-economic analysis of direct air capture," Applied Energy, Elsevier, vol. 250(C), pages 959-975.
    5. Li, Canbing & Shi, Haiqing & Cao, Yijia & Kuang, Yonghong & Zhang, Yongjun & Gao, Dan & Sun, Liang, 2015. "Modeling and optimal operation of carbon capture from the air driven by intermittent and volatile wind power," Energy, Elsevier, vol. 87(C), pages 201-211.
    6. Bongartz, Dominik & Doré, Larissa & Eichler, Katharina & Grube, Thomas & Heuser, Benedikt & Hombach, Laura E. & Robinius, Martin & Pischinger, Stefan & Stolten, Detlef & Walther, Grit & Mitsos, Alexan, 2018. "Comparison of light-duty transportation fuels produced from renewable hydrogen and green carbon dioxide," Applied Energy, Elsevier, vol. 231(C), pages 757-767.
    7. Enric Prats-Salvado & Nathalie Monnerie & Christian Sattler, 2021. "Synergies between Direct Air Capture Technologies and Solar Thermochemical Cycles in the Production of Methanol," Energies, MDPI, vol. 14(16), pages 1-21, August.
    8. Svanberg, Martin & Ellis, Joanne & Lundgren, Joakim & Landälv, Ingvar, 2018. "Renewable methanol as a fuel for the shipping industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1217-1228.
    9. Capros, Pantelis & Zazias, Georgios & Evangelopoulou, Stavroula & Kannavou, Maria & Fotiou, Theofano & Siskos, Pelopidas & De Vita, Alessia & Sakellaris, Konstantinos, 2019. "Energy-system modelling of the EU strategy towards climate-neutrality," Energy Policy, Elsevier, vol. 134(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    2. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).
    4. Drechsler, Carsten & Agar, David W., 2020. "Intensified integrated direct air capture - power-to-gas process based on H2O and CO2 from ambient air," Applied Energy, Elsevier, vol. 273(C).
    5. Harris, Kylee & Grim, R. Gary & Huang, Zhe & Tao, Ling, 2021. "A comparative techno-economic analysis of renewable methanol synthesis from biomass and CO2: Opportunities and barriers to commercialization," Applied Energy, Elsevier, vol. 303(C).
    6. Korberg, A.D. & Brynolf, S. & Grahn, M. & Skov, I.R., 2021. "Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    7. Mukherjee, Agneev & Bruijnincx, Pieter & Junginger, Martin, 2023. "Techno-economic competitiveness of renewable fuel alternatives in the marine sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    8. Furst, Oscar & Wehrle, Lukas & Schmider, Daniel & Dailly, Julian & Deutschmann, Olaf, 2024. "Modeling, optimization and comparative assessment of power-to-methane and carbon capture technologies for renewable fuel production," Applied Energy, Elsevier, vol. 375(C).
    9. repec:zib:zjmerd:4jmerd2018-22-32 is not listed on IDEAS
    10. Andrea Barbaresi & Mirko Morini & Agostino Gambarotta, 2022. "Review on the Status of the Research on Power-to-Gas Experimental Activities," Energies, MDPI, vol. 15(16), pages 1-32, August.
    11. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Rezaei, Mostafa & Akimov, Alexandr & Gray, Evan MacA., 2024. "Techno-economics of renewable hydrogen export: A case study for Australia-Japan," Applied Energy, Elsevier, vol. 374(C).
    13. Wang, Qian & Du, Caiyi & Zhang, Xueguang, 2024. "Direct air capture capacity configuration and cost allocation based on sharing mechanism," Applied Energy, Elsevier, vol. 374(C).
    14. Stergios Statharas & Yannis Moysoglou & Pelopidas Siskos & Pantelis Capros, 2021. "Simulating the Evolution of Business Models for Electricity Recharging Infrastructure Development by 2030: A Case Study for Greece," Energies, MDPI, vol. 14(9), pages 1-24, April.
    15. Xu, Guangyue & Dong, Haoyun & Xu, Zhenci & Bhattarai, Nishan, 2022. "China can reach carbon neutrality before 2050 by improving economic development quality," Energy, Elsevier, vol. 243(C).
    16. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    17. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2021. "Impact of fuel cell range extender powertrain design on greenhouse gases and NOX emissions in automotive applications," Applied Energy, Elsevier, vol. 302(C).
    18. David Borge-Diez & Enrique Rosales-Asensio & Emin Açıkkalp & Daniel Alonso-Martínez, 2023. "Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union," Energies, MDPI, vol. 16(1), pages 1-22, January.
    19. Zhou, Huairong & Cao, Abo & Meng, Wenliang & Wang, Dongliang & Li, Guixian & Yang, Siyu, 2024. "Process integration and analysis of coupling solid oxide electrolysis cell (SOEC) and CO2 to methanol," Energy, Elsevier, vol. 307(C).
    20. Navarro, J.C. & Baena-Moreno, F.M. & Centeno, M.A. & Laguna, O.H. & Almagro, J.F. & Odriozola, J.A., 2023. "Process design and utilisation strategy for CO2 capture in flue gases. Technical assessment and preliminary economic approach for steel mills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    21. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:9:p:3881-:d:1138804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.