IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v237y2023i5p886-896.html
   My bibliography  Save this article

Collaborative data-driven reliability analysis of multi-state fault trees

Author

Listed:
  • Parisa Niloofar
  • Sanja Lazarova-Molnar

Abstract

Fault tree modeling and failure analysis of systems that are equipped with sensors and meters are becoming more automated and less human-dependent. For a single system to benefit from its own collected data, it will need to wait for a long time to collect sufficient data to build representative models to increase its reliability. Therefore, if multiple systems with similar functionalities cooperate, the resolution of the collected data will increase. This leads to extracting fault trees with higher accuracy in failure detection and prediction. In this paper, we present an extended approach for collaborative Data-Driven Fault Tree Analysis (DDFTA) of a system which extracts repairable fault trees from time series data streaming from multiple systems/machines sharing similar functionalities. Results are analyzed to estimate the system’s reliability measures and investigate the effect of number of machines cooperating in data collection. Our method is not limited to binary (two states) components, nor to exponential distributions. Results show that applying collaborative data analytics significantly increases the accuracy of data-driven fault tree analysis, specifically for systems following nonexponential distributions.

Suggested Citation

  • Parisa Niloofar & Sanja Lazarova-Molnar, 2023. "Collaborative data-driven reliability analysis of multi-state fault trees," Journal of Risk and Reliability, , vol. 237(5), pages 886-896, October.
  • Handle: RePEc:sae:risrel:v:237:y:2023:i:5:p:886-896
    DOI: 10.1177/1748006X221076290
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X221076290
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X221076290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Giorgino, Toni, 2009. "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i07).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amato, Umberto & Antoniadis, Anestis & De Feis, Italia & Goude, Yannig & Lagache, Audrey, 2021. "Forecasting high resolution electricity demand data with additive models including smooth and jagged components," International Journal of Forecasting, Elsevier, vol. 37(1), pages 171-185.
    2. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2021. "Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns," Energy Economics, Elsevier, vol. 94(C).
    3. Christoph J. Borner & Ingo Hoffmann & Jonas Krettek & Lars M. Kurzinger & Tim Schmitz, 2021. "Bitcoin: Like a Satellite or Always Hardcore? A Core-Satellite Identification in the Cryptocurrency Market," Papers 2105.12336, arXiv.org.
    4. Hanjo Odendaal & Monique Reid & Johann F. Kirsten, 2020. "Media‐Based Sentiment Indices as an Alternative Measure of Consumer Confidence," South African Journal of Economics, Economic Society of South Africa, vol. 88(4), pages 409-434, December.
    5. Krzysztof Dmytrow & Beata Bieszk-Stolorz, 2021. "Comparison of changes in the labour markets of post-communist countries with other EU member states," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(4), pages 741-764, December.
    6. Yangchen Di & Mingyue Lu & Min Chen & Zhangjian Chen & Zaiyang Ma & Manzhu Yu, 2022. "A quantitative method for the similarity assessment of typhoon tracks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 587-602, May.
    7. De Gregorio, Alessandro & Maria Iacus, Stefano, 2010. "Clustering of discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 598-606, February.
    8. Szczepocki Piotr, 2019. "Clustering Companies Listed on the Warsaw Stock Exchange According to Time-Varying Beta," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 63-79, June.
    9. Corey Ducharme & Bruno Agard & Martin Trépanier, 2024. "Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1661-1681, August.
    10. Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoe Sallah & El-Hadj Ba & Badara Cissé & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    11. Krzysztof Dmytrów & Joanna Landmesser & Beata Bieszk-Stolorz, 2021. "The Connections between COVID-19 and the Energy Commodities Prices: Evidence through the Dynamic Time Warping Method," Energies, MDPI, vol. 14(13), pages 1-23, July.
    12. Roberto Benedetti & Federica Piersimoni & Giacomo Pignataro & Francesco Vidoli, 2020. "Identification of spatially constrained homogeneous clusters of COVID‐19 transmission in Italy," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1169-1187, December.
    13. Iason Sideris & Francesco Crivelli & Markus Bambach, 2023. "GPyro: uncertainty-aware temperature predictions for additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 243-259, January.
    14. Orman, Günce Keziban & Labatut, Vincent & Naskali, Ahmet Teoman, 2017. "Exploring the evolution of node neighborhoods in Dynamic Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 375-391.
    15. Beste Hamiye Beyaztas & Ufuk Beyaztas & Soutir Bandyopadhyay & Wei-Min Huang, 2018. "New and Fast Block Bootstrap-Based Prediction Intervals for GARCH(1,1) Process with Application to Exchange Rates," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 168-194, February.
    16. Yiyu Li & Qingxu Huang & Ling Zhang & Jian Li & Yingfei Sui & Weichen Zhang, 2022. "Dynamics of Urban Land per Capita in China from 2000 to 2016," Land, MDPI, vol. 12(1), pages 1-16, December.
    17. Debarsy, Nicolas & Dossougoin, Cyrille & Ertur, Cem & Gnabo, Jean-Yves, 2018. "Measuring sovereign risk spillovers and assessing the role of transmission channels: A spatial econometrics approach," Journal of Economic Dynamics and Control, Elsevier, vol. 87(C), pages 21-45.
    18. MacPherson, Brian & Scott, Ryan & Gras, Robin, 2023. "Using individual-based modelling to investigate a pluralistic explanation for the prevalence of sexual reproduction in animal species," Ecological Modelling, Elsevier, vol. 475(C).
    19. Song, Dengwei & Cheng, Yujie & Zhou, An & Lu, Chen & Chong, Jin & Ma, Jian, 2024. "Remaining useful life prediction and cycle life test optimization for multiple-formula battery: A method based on multi-source transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    20. Christoph J. Börner & Ingo Hoffmann & Jonas Krettek & Tim Schmitz, 2022. "Bitcoin: like a satellite or always hardcore? A core–satellite identification in the cryptocurrency market," Journal of Asset Management, Palgrave Macmillan, vol. 23(4), pages 310-321, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:237:y:2023:i:5:p:886-896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.