IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4468-d842550.html
   My bibliography  Save this article

Inkjet 3D Printed MEMS Electromagnetic Multi-Frequency Energy Harvester

Author

Listed:
  • Bartosz Kawa

    (Department of Microsystems, Wroclaw University of Science and Technology, 50370 Wroclaw, Poland)

  • Chengkuo Lee

    (Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117608, Singapore)

  • Rafał Walczak

    (Department of Microsystems, Wroclaw University of Science and Technology, 50370 Wroclaw, Poland)

Abstract

Multi-frequency operation is an interesting and desired feature of electromagnetic energy harvesters. This work presents results of investigations on an inkjet 3D-printed miniature multi-frequency electromagnetic energy harvester. Vibrating microstructures utilizing springs with constant thickness (300 μm) and widths from 220 to 500 μm were designed, fabricated, and characterized as parts of the miniature energy harvester. Resonant frequencies of the microstructures were measured, and electrical parameters of the harvester were determined. The harvesters operated in the 85–185 Hz frequency range with 32 µW maximal output power. Thanks to flexibility in designing and fabrication by 3D printing, it was possible to develop an energy harvester with at least two operating frequencies within a single harvester structure in many possible two-frequency configurations.

Suggested Citation

  • Bartosz Kawa & Chengkuo Lee & Rafał Walczak, 2022. "Inkjet 3D Printed MEMS Electromagnetic Multi-Frequency Energy Harvester," Energies, MDPI, vol. 15(12), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4468-:d:842550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4468/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4468/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Zhemin & Du, Yu & Li, Tianrun & Yan, Zhimiao & Tan, Ting, 2021. "A flute-inspired broadband piezoelectric vibration energy harvesting device with mechanical intelligent design," Applied Energy, Elsevier, vol. 303(C).
    2. Philipp Gawron & Thomas M. Wendt & Lukas Stiglmeier & Nikolai Hangst & Urban B. Himmelsbach, 2021. "A Review on Kinetic Energy Harvesting with Focus on 3D Printed Electromagnetic Vibration Harvesters," Energies, MDPI, vol. 14(21), pages 1-24, October.
    3. Bartosz Kawa & Krzysztof Śliwa & Vincent Ch. Lee & Qiongfeng Shi & Rafał Walczak, 2020. "Inkjet 3D Printed MEMS Vibrational Electromagnetic Energy Harvester," Energies, MDPI, vol. 13(11), pages 1-10, June.
    4. Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
    5. Michele Bonnin & Fabio L. Traversa & Fabrizio Bonani, 2022. "An Impedance Matching Solution to Increase the Harvested Power and Efficiency of Nonlinear Piezoelectric Energy Harvesters," Energies, MDPI, vol. 15(8), pages 1-17, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bogdan Dziadak & Łukasz Makowski & Mariusz Kucharek & Adam Jóśko, 2023. "Energy Harvesting for Wearable Sensors and Body Area Network Nodes," Energies, MDPI, vol. 16(4), pages 1-30, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khazaee, Majid & Huber, John E. & Rosendahl, Lasse & Rezania, Alireza, 2021. "The investigation of viscous and structural damping for piezoelectric energy harvesters using only time-domain voltage measurements," Applied Energy, Elsevier, vol. 285(C).
    2. Zhao, Dong & Liu, Ying, 2020. "A prototype for light-electric harvester based on light sensitive liquid crystal elastomer cantilever," Energy, Elsevier, vol. 198(C).
    3. Alqaleiby, Hossam & Ayyad, Mahmoud & Hajj, Muhammad R. & Ragab, Saad A. & Zuo, Lei, 2024. "Effects of piezoelectric energy harvesting from a morphing flapping tail on its performance," Applied Energy, Elsevier, vol. 353(PA).
    4. Dibin Zhu, 2022. "Advance Energy Harvesting Technologies," Energies, MDPI, vol. 15(7), pages 1-3, March.
    5. Toyabur Rahman, M. & Sohel Rana, SM & Salauddin, Md. & Maharjan, Pukar & Bhatta, Trilochan & Kim, Hyunsik & Cho, Hyunok & Park, Jae Yeong, 2020. "A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting," Applied Energy, Elsevier, vol. 279(C).
    6. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    7. Marco Antonio Islas-Herrera & David Sánchez-Luna & Jorge Miguel Jaimes-Ponce & Daniel Andrés Córdova-Córdova & Christopher Iván Lorenzo-Alfaro & Daniel Hernández-Rivera, 2024. "Energy Harvester Based on Mechanical Impacts of an Oscillating Rod on Piezoelectric Transducers," Clean Technol., MDPI, vol. 6(3), pages 1-14, July.
    8. Li, Zhongjie & Yang, Zhengbao & Naguib, Hani E., 2020. "Introducing revolute joints into piezoelectric energy harvesters," Energy, Elsevier, vol. 192(C).
    9. Huang, Xingbao, 2024. "Exploiting multi-stiffness combination inspired absorbers for simultaneous energy harvesting and vibration mitigation," Applied Energy, Elsevier, vol. 364(C).
    10. Michele Bonnin & Fabio L. Traversa & Fabrizio Bonani, 2022. "An Impedance Matching Solution to Increase the Harvested Power and Efficiency of Nonlinear Piezoelectric Energy Harvesters," Energies, MDPI, vol. 15(8), pages 1-17, April.
    11. Bartosz Kawa & Krzysztof Śliwa & Vincent Ch. Lee & Qiongfeng Shi & Rafał Walczak, 2020. "Inkjet 3D Printed MEMS Vibrational Electromagnetic Energy Harvester," Energies, MDPI, vol. 13(11), pages 1-10, June.
    12. Wang, Shuyun & Yang, Zemeng & Kan, Junwu & Chen, Song & Chai, Chaohui & Zhang, Zhonghua, 2021. "Design and characterization of an amplitude-limiting rotational piezoelectric energy harvester excited by a radially dragged magnetic force," Renewable Energy, Elsevier, vol. 177(C), pages 1382-1393.
    13. Maria Joseph Raj, Nirmal Prashanth & Alluri, Nagamalleswara Rao & Vivekananthan, Venkateswaran & Chandrasekhar, Arunkumar & Khandelwal, Gaurav & Kim, Sang-Jae, 2018. "Sustainable yarn type-piezoelectric energy harvester as an eco-friendly, cost-effective battery-free breath sensor," Applied Energy, Elsevier, vol. 228(C), pages 1767-1776.
    14. Aldawood, Ghufran & Nguyen, Hieu Tri & Bardaweel, Hamzeh, 2019. "High power density spring-assisted nonlinear electromagnetic vibration energy harvester for low base-accelerations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    15. Wang, Shuai & Wang, Chaohui & Gao, Zhiwei & Cao, Hongyun, 2020. "Design and performance of a cantilever piezoelectric power generation device for real-time road safety warnings," Applied Energy, Elsevier, vol. 276(C).
    16. Gao, Mingyuan & Wang, Yuan & Wang, Yifeng & Wang, Ping, 2018. "Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation," Applied Energy, Elsevier, vol. 220(C), pages 856-875.
    17. Zhang, Jinhui & Qin, Lifeng, 2019. "A tunable frequency up-conversion wideband piezoelectric vibration energy harvester for low-frequency variable environment using a novel impact- and rope-driven hybrid mechanism," Applied Energy, Elsevier, vol. 240(C), pages 26-34.
    18. He, Jian & Fan, Xueming & Mu, Jiliang & Wang, Chao & Qian, Jichao & Li, Xiucheng & Hou, Xiaojuan & Geng, Wenping & Wang, Xiangdong & Chou, Xiujian, 2020. "3D full-space triboelectric-electromagnetic hybrid nanogenerator for high-efficient mechanical energy harvesting in vibration system," Energy, Elsevier, vol. 194(C).
    19. Luo, Anxin & Zhang, Yulong & Dai, Xiangtian & Wang, Yifan & Xu, Weihan & Lu, Yan & Wang, Min & Fan, Kangqi & Wang, Fei, 2020. "An inertial rotary energy harvester for vibrations at ultra-low frequency with high energy conversion efficiency," Applied Energy, Elsevier, vol. 279(C).
    20. Tri Nguyen, Hieu & Genov, Dentcho A. & Bardaweel, Hamzeh, 2020. "Vibration energy harvesting using magnetic spring based nonlinear oscillators: Design strategies and insights," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4468-:d:842550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.