IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i8p3429-d1122840.html
   My bibliography  Save this article

Fault Detection of Induction Motors with Combined Modeling- and Machine-Learning-Based Framework

Author

Listed:
  • Moritz Benninger

    (Faculty of Electronics and Computer Science, University of Applied Sciences Aalen, 73430 Aalen, Germany)

  • Marcus Liebschner

    (Faculty of Electronics and Computer Science, University of Applied Sciences Aalen, 73430 Aalen, Germany)

  • Christian Kreischer

    (Chair for Electrical Machines and Drive Systems, Helmut Schmidt University, 22043 Hamburg, Germany)

Abstract

This paper deals with the early detection of fault conditions in induction motors using a combined model- and machine-learning-based approach with flexible adaptation to individual motors. The method is based on analytical modeling in the form of a multiple coupled circuit model and a feedforward neural network. In addition, the differential evolution algorithm independently identifies the parameters of the motor for the multiple coupled circuit model based on easily obtained measurement data from a healthy state. With the identified parameters, the multiple coupled circuit model is used to perform dynamic simulations of the various fault cases of the specific induction motor. The simulation data set of the stator currents is used to train the neural network for classification of different stator, rotor, mechanical, and voltage supply faults. Finally, the combined method is successfully validated with measured data of faults in an induction motor, proving the transferability of the simulation-trained neural network to a real environment. Neglecting bearing faults, the fault cases from the validation data are classified with an accuracy of 94.81%.

Suggested Citation

  • Moritz Benninger & Marcus Liebschner & Christian Kreischer, 2023. "Fault Detection of Induction Motors with Combined Modeling- and Machine-Learning-Based Framework," Energies, MDPI, vol. 16(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3429-:d:1122840
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/8/3429/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/8/3429/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ana L. Martinez-Herrera & Edna R. Ferrucho-Alvarez & Luis M. Ledesma-Carrillo & Ruth I. Mata-Chavez & Misael Lopez-Ramirez & Eduardo Cabal-Yepez, 2022. "Multiple Fault Detection in Induction Motors through Homogeneity and Kurtosis Computation," Energies, MDPI, vol. 15(4), pages 1-11, February.
    2. Alasmer Ibrahim & Fatih Anayi & Michael Packianather & Osama Ahmad Alomari, 2022. "New Hybrid Invasive Weed Optimization and Machine Learning Approach for Fault Detection," Energies, MDPI, vol. 15(4), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reza Bazghandi & Mohammad Hoseintabar Marzebali & Vahid Abolghasemi & Shahin Hedayati Kia, 2023. "A Novel Mode Un-Mixing Approach in Variational Mode Decomposition for Fault Detection in Wound Rotor Induction Machines," Energies, MDPI, vol. 16(14), pages 1-17, July.
    2. Moritz Benninger & Marcus Liebschner, 2024. "Optimization of Practicality for Modeling- and Machine Learning-Based Framework for Early Fault Detection of Induction Motors," Energies, MDPI, vol. 17(15), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josue A. Reyes-Malanche & Francisco J. Villalobos-Pina & Efraın Ramırez-Velasco & Eduardo Cabal-Yepez & Geovanni Hernandez-Gomez & Misael Lopez-Ramirez, 2023. "Short-Circuit Fault Diagnosis on Induction Motors through Electric Current Phasor Analysis and Fuzzy Logic," Energies, MDPI, vol. 16(1), pages 1-15, January.
    2. Ryszard Palka, 2022. "The Performance of Induction Machines," Energies, MDPI, vol. 15(9), pages 1-4, April.
    3. Jian Yang & Yu Liu & Shangguang Jiang & Yazhou Luo & Nianzhang Liu & Deping Ke, 2022. "A Method of Probability Distribution Modeling of Multi-Dimensional Conditions for Wind Power Forecast Error Based on MNSGA-II-Kmeans," Energies, MDPI, vol. 15(7), pages 1-21, March.
    4. Federico Gargiulo & Annalisa Liccardo & Rosario Schiano Lo Moriello, 2022. "A Non-Invasive Method Based on AI and Current Measurements for the Detection of Faults in Three-Phase Motors," Energies, MDPI, vol. 15(12), pages 1-19, June.
    5. Muhammad Zuhaib & Faraz Ahmed Shaikh & Wajiha Tanweer & Abdullah M. Alnajim & Saleh Alyahya & Sheroz Khan & Muhammad Usman & Muhammad Islam & Mohammad Kamrul Hasan, 2022. "Faults Feature Extraction Using Discrete Wavelet Transform and Artificial Neural Network for Induction Motor Availability Monitoring—Internet of Things Enabled Environment," Energies, MDPI, vol. 15(21), pages 1-32, October.
    6. Luis Alonso Trujillo Guajardo & Miguel Angel Platas Garza & Johnny Rodríguez Maldonado & Mario Alberto González Vázquez & Luis Humberto Rodríguez Alfaro & Fernando Salinas Salinas, 2022. "Prony Method Estimation for Motor Current Signal Analysis Diagnostics in Rotor Cage Induction Motors," Energies, MDPI, vol. 15(10), pages 1-24, May.
    7. Angela Navarro-Navarro & Israel Zamudio-Ramirez & Vicente Biot-Monterde & Roque A. Osornio-Rios & Jose A. Antonino-Daviu, 2022. "Current and Stray Flux Combined Analysis for the Automatic Detection of Rotor Faults in Soft-Started Induction Motors," Energies, MDPI, vol. 15(7), pages 1-19, March.
    8. Sarahi Aguayo-Tapia & Gerardo Avalos-Almazan & Jose de Jesus Rangel-Magdaleno & Juan Manuel Ramirez-Cortes, 2023. "Physical Variable Measurement Techniques for Fault Detection in Electric Motors," Energies, MDPI, vol. 16(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:8:p:3429-:d:1122840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.