IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6686-d464228.html
   My bibliography  Save this article

Application of a Non-carrier-Based Modulation for Current Harmonics Spectrum Control during Regenerative Braking of the Electric Vehicle

Author

Listed:
  • Marcin Steczek

    (Faculty of Electrical Engineering, Institute of Electrical Power Engineering, Warsaw University of Technology, 00-661 Warszawa, Poland)

  • Piotr Chudzik

    (Faculty of Electrical Engineering, Institute of Automatic Control, Lodz University of Technology, 90-924 Łódź, Poland)

  • Adam Szeląg

    (Faculty of Electrical Engineering, Institute of Electrical Power Engineering, Warsaw University of Technology, 00-661 Warszawa, Poland)

Abstract

The regenerative braking of railway vehicles is widely used in DC railway systems all over the world. This mode of operation provides an opportunity to reuse part of the energy consumed by vehicles, and makes the railway system more energy efficient. During regenerative braking, not only energy management is an issue, but also Electromagnetic Compatibility EMC issues, such as interference of generated current harmonics with a railway signaling system. In this paper, the selective harmonic elimination modulation technique (SHE-PWM) was introduced to the traction drive with a three-level inverter to reduce specific catenary current harmonics generated during regenerative braking. The simulation model of a traction drive appropriate for harmonics analysis was proposed and verified by the measurements in the low-power laboratory drive system. The model was re-scaled to the 3 kV DC system for further study. The model of an induction motor with electromotive force and the method of its calculation was proposed. Furthermore, an analysis of the braking chopper operation was carried out. The asymmetric control of braking chopper was proposed to reduce the current harmonics below limits during chopper operation.

Suggested Citation

  • Marcin Steczek & Piotr Chudzik & Adam Szeląg, 2020. "Application of a Non-carrier-Based Modulation for Current Harmonics Spectrum Control during Regenerative Braking of the Electric Vehicle," Energies, MDPI, vol. 13(24), pages 1-21, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6686-:d:464228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6686/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6686/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marek Adamowicz & Janusz Szewczyk, 2020. "SiC-Based Power Electronic Traction Transformer (PETT) for 3 kV DC Rail Traction," Energies, MDPI, vol. 13(21), pages 1-30, October.
    2. Petru Valentin Radu & Adam Szelag & Marcin Steczek, 2019. "On-Board Energy Storage Devices with Supercapacitors for Metro Trains—Case Study Analysis of Application Effectiveness," Energies, MDPI, vol. 12(7), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Chudzik & Marcin Steczek & Karol Tatar, 2022. "Reduction in Selected Torque Harmonics in a Three-Level NPC Inverter-Fed Induction Motor Drive," Energies, MDPI, vol. 15(11), pages 1-12, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jefimowski, Włodzimierz & Szeląg, Adam & Steczek, Marcin & Nikitenko, Anatolii, 2020. "Vanadium redox flow battery parameters optimization in a transportation microgrid: A case study," Energy, Elsevier, vol. 195(C).
    2. Petru Valentin Radu & Miroslaw Lewandowski & Adam Szelag, 2020. "On-Board and Wayside Energy Storage Devices Applications in Urban Transport Systems—Case Study Analysis for Power Applications," Energies, MDPI, vol. 13(8), pages 1-29, April.
    3. Guang Yang & Feng Zhang & Cheng Gong & Shiwen Zhang, 2019. "Application of a Deep Deterministic Policy Gradient Algorithm for Energy-Aimed Timetable Rescheduling Problem," Energies, MDPI, vol. 12(18), pages 1-19, September.
    4. Agata Pomykala & Adam Szelag, 2022. "Reduction of Power Consumption and CO 2 Emissions as a Result of Putting into Service High-Speed Trains: Polish Case," Energies, MDPI, vol. 15(12), pages 1-24, June.
    5. Piotr Kołodziejek & Daniel Wachowiak, 2022. "Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive," Energies, MDPI, vol. 15(3), pages 1-14, February.
    6. Artur Kierzkowski & Szymon Haładyn, 2022. "Method for Reconfiguring Train Schedules Taking into Account the Global Reduction of Railway Energy Consumption," Energies, MDPI, vol. 15(5), pages 1-18, March.
    7. Hassan Mohammadi Pirouz & Amin Hajizadeh, 2020. "A Highly Reliable Propulsion System with Onboard Uninterruptible Power Supply for Train Application: Topology and Control," Sustainability, MDPI, vol. 12(10), pages 1-30, May.
    8. Furkan Karakaya & Özgür Gülsuna & Ozan Keysan, 2021. "Feasibility of Quasi-Square-Wave Zero-Voltage-Switching Bi-Directional DC/DC Converters with GaN HEMTs," Energies, MDPI, vol. 14(10), pages 1-23, May.
    9. Sakda Somkun & Toshiro Sato & Viboon Chunkag & Akekachai Pannawan & Pornnipa Nunocha & Tawat Suriwong, 2021. "Performance Comparison of Ferrite and Nanocrystalline Cores for Medium-Frequency Transformer of Dual Active Bridge DC-DC Converter," Energies, MDPI, vol. 14(9), pages 1-21, April.
    10. Petru Valentin Radu & Miroslaw Lewandowski & Adam Szelag & Marcin Steczek, 2022. "Short-Circuit Fault Current Modeling of a DC Light Rail System with a Wayside Energy Storage Device," Energies, MDPI, vol. 15(10), pages 1-24, May.
    11. Franciszek Restel & Szymon Mateusz Haładyn, 2022. "The Railway Timetable Evaluation Method in Terms of Operational Robustness against Overloads of the Power Supply System," Energies, MDPI, vol. 15(17), pages 1-17, September.
    12. Ivan Radaš & Ivan Župan & Viktor Šunde & Željko Ban, 2021. "Route Profile Dependent Tram Regenerative Braking Algorithm with Reduced Impact on the Supply Network," Energies, MDPI, vol. 14(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6686-:d:464228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.