IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v203y2020ics0951832020305780.html
   My bibliography  Save this article

Reliability based modeling and analysis for a wind power system integrated by two wind farms considering wind speed dependence

Author

Listed:
  • Eryilmaz, Serkan
  • Kan, Cihangir

Abstract

Integrating multiple wind farms into power systems may reduce the fluctuation in total power output of wind farms and hence it decreases the system risk resulting from the wind speed variability. In this paper, a wind power system consisting of two wind farms is modeled and analyzed considering the dependence between wind speeds at two sites. In particular, the system is modeled as a threshold system and reliability values of wind turbines are also taken into account in capacity based calculations. The results are illustrated for the available bivariate wind speed data in the literature.

Suggested Citation

  • Eryilmaz, Serkan & Kan, Cihangir, 2020. "Reliability based modeling and analysis for a wind power system integrated by two wind farms considering wind speed dependence," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
  • Handle: RePEc:eee:reensy:v:203:y:2020:i:c:s0951832020305780
    DOI: 10.1016/j.ress.2020.107077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020305780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, M.S. & Lin, Z.J. & Ji, T.Y. & Wu, Q.H., 2018. "Risk constrained stochastic economic dispatch considering dependence of multiple wind farms using pair-copula," Applied Energy, Elsevier, vol. 226(C), pages 967-978.
    2. Li, Wei & Zuo, Ming J., 2008. "Optimal design of multi-state weighted k-out-of-n systems based on component design," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1673-1681.
    3. Shiyu Liu & Gengfeng Li & Haipeng Xie & Xifan Wang, 2017. "Correlation Characteristic Analysis for Wind Speed in Different Geographical Hierarchies," Energies, MDPI, vol. 10(2), pages 1-20, February.
    4. Zhou, Shaowu & Xiao, Qing & Wu, Lianghong, 2020. "Probabilistic power flow analysis with correlated wind speeds," Renewable Energy, Elsevier, vol. 145(C), pages 2169-2177.
    5. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    6. Sebastian Pfaffel & Stefan Faulstich & Kurt Rohrig, 2017. "Performance and Reliability of Wind Turbines: A Review," Energies, MDPI, vol. 10(11), pages 1-27, November.
    7. Li, Wei & Zuo, Ming J., 2008. "Reliability evaluation of multi-state weighted k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 160-167.
    8. Wang, Jianzhou & Hu, Jianming & Ma, Kailiang, 2016. "Wind speed probability distribution estimation and wind energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 881-899.
    9. Hagspiel, Simeon & Papaemannouil, Antonis & Schmid, Matthias & Andersson, Göran, 2012. "Copula-based modeling of stochastic wind power in Europe and implications for the Swiss power grid," Applied Energy, Elsevier, vol. 96(C), pages 33-44.
    10. Rahmani, Rabi-Allah & Izadi, Muhyiddin & Khaledi, Baha-Eldin, 2016. "Stochastic comparisons of total capacity of weighted-k-out-of-n systems," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 216-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jian & Gao, Shibin & Yu, Long & Zhang, Dongkai & Ding, Chugang & Chen, Ke & Kou, Lei, 2022. "Predicting wind-caused floater intrusion risk for overhead contact lines based on Bayesian neural network with spatiotemporal correlation analysis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Jain, Tanmay & Verma, Kusum, 2024. "Reliability based computational model for stochastic unit commitment of a bulk power system integrated with volatile wind power," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Hui Hwang Goh & Gumeng Peng & Dongdong Zhang & Wei Dai & Tonni Agustiono Kurniawan & Kai Chen Goh & Chin Leei Cham, 2022. "A New Wind Speed Scenario Generation Method Based on Principal Component and R-Vine Copula Theories," Energies, MDPI, vol. 15(7), pages 1-21, April.
    4. Zhu, Xiaoxun & Liu, Ruizhang & Chen, Yao & Gao, Xiaoxia & Wang, Yu & Xu, Zixu, 2021. "Wind speed behaviors feather analysis and its utilization on wind speed prediction using 3D-CNN," Energy, Elsevier, vol. 236(C).
    5. Kristjanpoller, Fredy & Cárdenas-Pantoja, Nicolás & Viveros, Pablo & Pascual, Rodrigo, 2023. "Wind farm life cycle cost modelling based on oversizing capacity under load sharing configuration," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    6. Na Zhang & Mingli Zhang & Liang Sun & Jingwei Hu & Jinqi Li & Weidong Li, 2022. "An Annual Electric Energy Trade Scheduling Model under the Dual Track Mode," Energies, MDPI, vol. 15(14), pages 1-19, July.
    7. Firouzi, Mohsen & Samimi, Abouzar & Salami, Abolfazl, 2022. "Reliability evaluation of a composite power system in the presence of renewable generations," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Li, He & Deng, Zhi-Ming & Golilarz, Noorbakhsh Amiri & Guedes Soares, C., 2021. "Reliability analysis of the main drive system of a CNC machine tool including early failures," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Zhang, Yiying, 2021. "Reliability Analysis of Randomly Weighted k-out-of-n Systems with Heterogeneous Components," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Li, He & Guedes Soares, C, 2022. "Assessment of failure rates and reliability of floating offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    11. Postnikov, Ivan, 2022. "A reliability assessment of the heating from a hybrid energy source based on combined heat and power and wind power plants," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Beyza, Jesus & Yusta, Jose M., 2021. "The effects of the high penetration of renewable energies on the reliability and vulnerability of interconnected electric power systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Afef Fekih & Hamed Habibi & Silvio Simani, 2022. "Fault Diagnosis and Fault Tolerant Control of Wind Turbines: An Overview," Energies, MDPI, vol. 15(19), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hui Hwang Goh & Gumeng Peng & Dongdong Zhang & Wei Dai & Tonni Agustiono Kurniawan & Kai Chen Goh & Chin Leei Cham, 2022. "A New Wind Speed Scenario Generation Method Based on Principal Component and R-Vine Copula Theories," Energies, MDPI, vol. 15(7), pages 1-21, April.
    2. Eryilmaz, Serkan, 2018. "Reliability analysis of multi-state system with three-state components and its application to wind energy," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 58-63.
    3. Bjarnason, Erik T.S. & Taghipour, Sharareh & Banjevic, Dragan, 2014. "Joint optimal inspection and inventory for a k-out-of-n system," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 203-215.
    4. Eryilmaz, Serkan & Rıza Bozbulut, Ali, 2014. "An algorithmic approach for the dynamic reliability analysis of non-repairable multi-state weighted k-out-of-n:G system," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 61-65.
    5. Hu, Yishuang & Lin, Yu & Ding, Yi & Chen, Xingying & Zeng, Zhiguo, 2021. "Screening of optimal structure among large-scale multi-state weighted k-out-of-n systems considering reliability evaluation," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    6. Eryilmaz, Serkan, 2013. "Mean instantaneous performance of a system with weighted components that have arbitrarily distributed lifetimes," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 290-293.
    7. Qi, Faqun & Yang, Huaqing & Wei, Lai & Shu, Xinting, 2024. "Preventive maintenance policy optimization for a weighted k-out-of-n: G system using the survival signature," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    8. Serkan Eryilmaz & Ali Riza Bozbulut, 2019. "Reliability analysis of weighted- k -out-of- n system consisting of three-state components," Journal of Risk and Reliability, , vol. 233(6), pages 972-977, December.
    9. Carta, José A. & Díaz, Santiago & Castañeda, Alberto, 2020. "A global sensitivity analysis method applied to wind farm power output estimation models," Applied Energy, Elsevier, vol. 280(C).
    10. Zhang, Yiying, 2018. "Optimal allocation of active redundancies in weighted k-out-of-n systems," Statistics & Probability Letters, Elsevier, vol. 135(C), pages 110-117.
    11. Eryilmaz, Serkan, 2013. "On reliability analysis of a k-out-of-n system with components having random weights," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 41-44.
    12. Eryilmaz, Serkan, 2015. "Capacity loss and residual capacity in weighted k-out-of-n:G systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 140-144.
    13. Hamdan, K. & Tavangar, M. & Asadi, M., 2021. "Optimal preventive maintenance for repairable weighted k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Faghih-Roohi, Shahrzad & Xie, Min & Ng, Kien Ming & Yam, Richard C.M., 2014. "Dynamic availability assessment and optimal component design of multi-state weighted k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 57-62.
    15. Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Elberg, Christina & Hagspiel, Simeon, 2015. "Spatial dependencies of wind power and interrelations with spot price dynamics," European Journal of Operational Research, Elsevier, vol. 241(1), pages 260-272.
    17. Ayman Al-Quraan & Bashar Al-Mhairat, 2022. "Intelligent Optimized Wind Turbine Cost Analysis for Different Wind Sites in Jordan," Sustainability, MDPI, vol. 14(5), pages 1-24, March.
    18. Xiao, Qing & Zhou, Shaowu, 2018. "Probabilistic power flow computation considering correlated wind speeds," Applied Energy, Elsevier, vol. 231(C), pages 677-685.
    19. Rahimiyan, Morteza, 2014. "A statistical cognitive model to assess impact of spatially correlated wind production on market behaviors," Applied Energy, Elsevier, vol. 122(C), pages 62-72.
    20. Di Somma, M. & Graditi, G. & Heydarian-Forushani, E. & Shafie-khah, M. & Siano, P., 2018. "Stochastic optimal scheduling of distributed energy resources with renewables considering economic and environmental aspects," Renewable Energy, Elsevier, vol. 116(PA), pages 272-287.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:203:y:2020:i:c:s0951832020305780. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.