IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p3982-d826385.html
   My bibliography  Save this article

Down-Hole Electromagnetic Heating of Deep Aquifers for Renewable Energy Storage

Author

Listed:
  • Samuel O. de Almeida

    (Federal Institute of the Southeast of Minas Gerais, Santos Dumont 36240-000, Brazil)

  • Grigori Chapiro

    (Department of Mathematics, Federal University of Juiz de Fora, Juiz de Fora 36036-900, Brazil)

  • Pacelli L. J. Zitha

    (Civil Engineering and Geosciences, Delft University of Technology, 2628 CD Delft, The Netherlands)

Abstract

Electromagnetic (EM) heating is an emerging method for storing renewable energy, such as photovoltaic solar and wind electric power, into aquifers. We investigate how the captured energy increases the temperature of a prototypical deep aquifer for a six-month period and then to which extent the stored energy can be recovered during the consecutive six months. Water injected at a constant flow rate is simultaneously heated using a high-frequency electromagnetic microwave emitter operating at the water natural resonance frequency of 2.45 GHz. The coupled reservoir flow and EM heating are described using Darcy’s and the energy balance equations. The latter includes a source term accounting for the EM wave propagation and absorption, modeled separately using Maxwell’s equations. The equations are solved numerically by the Galerkin least-squares finite element method. The approach was validated using EM-heating input data obtained from controlled laboratory experiments and then was applied to the aquifer. We found that after six years of alternate storage and recovery, up to 77% of the injected energy is recovered when considering realistic heat losses estimated from field data. Even when heat losses are increased by a factor of two, up to 69% of the injected energy is recovered in this case. This shows that down-hole EM heating is a highly effective method for storing renewable energies, capable of helping to solve their inherent intermittency.

Suggested Citation

  • Samuel O. de Almeida & Grigori Chapiro & Pacelli L. J. Zitha, 2022. "Down-Hole Electromagnetic Heating of Deep Aquifers for Renewable Energy Storage," Energies, MDPI, vol. 15(11), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3982-:d:826385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/3982/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/3982/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bera, Achinta & Babadagli, Tayfun, 2015. "Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review," Applied Energy, Elsevier, vol. 151(C), pages 206-226.
    2. Kastner, O. & Norden, B. & Klapperer, S. & Park, S. & Urpi, L. & Cacace, M. & Blöcher, G., 2017. "Thermal solar energy storage in Jurassic aquifers in Northeastern Germany: A simulation study," Renewable Energy, Elsevier, vol. 104(C), pages 290-306.
    3. Badakhshan, Sobhan & Hajibandeh, Neda & Shafie-khah, Miadreza & Catalão, João.P.S., 2019. "Impact of solar energy on the integrated operation of electricity-gas grids," Energy, Elsevier, vol. 183(C), pages 844-853.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Sowiżdżał, 2022. "Geothermal Systems—An Overview," Energies, MDPI, vol. 15(17), pages 1-5, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jia Liu & Jianguo Wang & Chunfai Leung & Feng Gao, 2018. "A Fully Coupled Numerical Model for Microwave Heating Enhanced Shale Gas Recovery," Energies, MDPI, vol. 11(6), pages 1-28, June.
    2. Zhou, Xiang & Yuan, Qingwang & Rui, Zhenhua & Wang, Hanyi & Feng, Jianwei & Zhang, Liehui & Zeng, Fanhua, 2019. "Feasibility study of CO2 huff 'n' puff process to enhance heavy oil recovery via long core experiments," Applied Energy, Elsevier, vol. 236(C), pages 526-539.
    3. Kai Stricker & Jens C. Grimmer & Robert Egert & Judith Bremer & Maziar Gholami Korzani & Eva Schill & Thomas Kohl, 2020. "The Potential of Depleted Oil Reservoirs for High-Temperature Storage Systems," Energies, MDPI, vol. 13(24), pages 1-26, December.
    4. Yao, Yue & Sun, Deqiang & Xu, Jin-Hua & Wang, Bin & Peng, Guohong & Sun, Bingmei, 2023. "Evaluation of enhanced oil recovery methods for mature continental heavy oil fields in China based on geology, technology and sustainability criteria," Energy, Elsevier, vol. 278(PB).
    5. Yang Yang & Wenchao Liu & Jifei Yu & Chen Liu & Yanfeng Cao & Mingkai Sun & Menglong Li & Zicheng Meng & Xinjiang Yan, 2024. "Technology Progress in High-Frequency Electromagnetic In Situ Thermal Recovery of Heavy Oil and Its Prospects in Low-Carbon Situations," Energies, MDPI, vol. 17(18), pages 1-19, September.
    6. Fleuchaus, Paul & Godschalk, Bas & Stober, Ingrid & Blum, Philipp, 2018. "Worldwide application of aquifer thermal energy storage – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 861-876.
    7. Tian, Xingtao & Lin, Xiaojie & Zhong, Wei & Zhou, Yi, 2022. "Security assessment of electricity-gas-heat integrated energy systems based on the vulnerability index," Energy, Elsevier, vol. 249(C).
    8. Hawkar Ali Abdulhaq & János Geiger & István Vass & Tivadar M. Tóth & Tamás Medgyes & János Szanyi, 2024. "Transforming Abandoned Hydrocarbon Fields into Heat Storage Solutions: A Hungarian Case Study Using Enhanced Multi-Criteria Decision Analysis–Analytic Hierarchy Process and Geostatistical Methods," Energies, MDPI, vol. 17(16), pages 1-23, August.
    9. Promsen, Mungmuang & Komatsu, Yosuke & Sciazko, Anna & Kaneko, Shozo & Shikazono, Naoki, 2023. "Power maximization and load range extension of solid oxide fuel cell operation by water cooling," Energy, Elsevier, vol. 276(C).
    10. Erdila Indriani & Sudjati Rachmat & Leksono Mucharram & Agus Yodi Gunawan & Munir Achmad & Anugerah Solida, 2018. "The Thermal Encroachment of Microwave Heating with Nano Ferro Fluids Injection on Heavy Oil Deposits," Modern Applied Science, Canadian Center of Science and Education, vol. 12(9), pages 1-1, September.
    11. Dong, Xiaohu & Liu, Huiqing & Chen, Zhangxin & Wu, Keliu & Lu, Ning & Zhang, Qichen, 2019. "Enhanced oil recovery techniques for heavy oil and oilsands reservoirs after steam injection," Applied Energy, Elsevier, vol. 239(C), pages 1190-1211.
    12. Li, He & Shi, Shiliang & Lin, Baiquan & Lu, Jiexin & Ye, Qing & Lu, Yi & Wang, Zheng & Hong, Yidu & Zhu, Xiangnan, 2019. "Effects of microwave-assisted pyrolysis on the microstructure of bituminous coals," Energy, Elsevier, vol. 187(C).
    13. Oscar E. Medina & Yira Hurtado & Cristina Caro-Velez & Farid B. Cortés & Masoud Riazi & Sergio H. Lopera & Camilo A. Franco, 2019. "Improvement of Steam Injection Processes Through Nanotechnology: An Approach through in Situ Upgrading and Foam Injection," Energies, MDPI, vol. 12(24), pages 1-21, December.
    14. Verástegui, Felipe & Lorca, Álvaro & Olivares, Daniel & Negrete-Pincetic, Matias, 2021. "Optimization-based analysis of decarbonization pathways and flexibility requirements in highly renewable power systems," Energy, Elsevier, vol. 234(C).
    15. Liu, Guanjun & Qin, Hui & Shen, Qin & Lyv, Hao & Qu, Yuhua & Fu, Jialong & Liu, Yongqi & Zhou, Jianzhong, 2021. "Probabilistic spatiotemporal solar irradiation forecasting using deep ensembles convolutional shared weight long short-term memory network," Applied Energy, Elsevier, vol. 300(C).
    16. Suogui Shang & Kechao Gao & Xinghua Zhang & Qibin Zhao & Guangfeng Chen & Liang Tao & Bin Song & Hongxing Yuan & Yonghai Gao, 2024. "Research on the Temperature Distribution in Electrically Heated Offshore Heavy Oil Wellbores," Energies, MDPI, vol. 17(5), pages 1-17, February.
    17. Cui, Ziang & Sun, Mengdi & Mohammadian, Erfan & Hu, Qinhong & Liu, Bo & Ostadhassan, Mehdi & Yang, Wuxing & Ke, Yubin & Mu, Jingfu & Ren, Zijie & Pan, Zhejun, 2024. "Characterizing microstructural evolutions in low-mature lacustrine shale: A comparative experimental study of conventional heat, microwave, and water-saturated microwave stimulations," Energy, Elsevier, vol. 294(C).
    18. Xia, Wenjie & Shen, Weijun & Yu, Li & Zheng, Chenggang & Yu, Weichu & Tang, Yongchun, 2016. "Conversion of petroleum to methane by the indigenous methanogenic consortia for oil recovery in heavy oil reservoir," Applied Energy, Elsevier, vol. 171(C), pages 646-655.
    19. Soiket, Md.I.H. & Oni, A.O. & Gemechu, E.D. & Kumar, A., 2019. "Life cycle assessment of greenhouse gas emissions of upgrading and refining bitumen from the solvent extraction process," Applied Energy, Elsevier, vol. 240(C), pages 236-250.
    20. Wang, Zhengxu & Gao, Deli & Diao, Binbin & Zhang, Wei, 2020. "The influence of casing properties on performance of radio frequency heating for oil sands recovery," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:3982-:d:826385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.