IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2635-d160207.html
   My bibliography  Save this article

Energy-Related Occupant Behaviour and Its Implications in Energy Use: A Chronological Review

Author

Listed:
  • Vivian W. Y. Tam

    (School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW 2751, Australia)

  • Laura Almeida

    (School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW 2751, Australia)

  • Khoa Le

    (School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW 2751, Australia)

Abstract

It is essential to understand how significantly occupants’ actions impact the performance of a building, as a whole, in terms of energy use. Consequently, this paper reviews the available resources on energy-related occupant behaviour and its implications in energy use in a building. A chronological review on energy-related occupant behaviour and its implications in energy use has been conducted. As a main existing gap, it was identified by researchers the difference between real energy performance and the one that is predicted during the design stage of a building. The energy predicted during the design stage of a building may be over twice the energy used in the operation stage. Buildings are one of the most energy intensive features in a country. They are affected by the interaction and correlation of several different variables, such as: its physical characteristics, technical systems, equipment, occupants, etc. Therefore, buildings are considered to be complex systems that require a careful and intensive analysis. Moreover, one of the key variables impacting real building energy use is occupant behaviour. The way occupants behave and their motivations are some of the main aspects that need to be considered in a building life-cycle.

Suggested Citation

  • Vivian W. Y. Tam & Laura Almeida & Khoa Le, 2018. "Energy-Related Occupant Behaviour and Its Implications in Energy Use: A Chronological Review," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2635-:d:160207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emery, A.F. & Kippenhan, C.J., 2006. "A long term study of residential home heating consumption and the effect of occupant behavior on homes in the Pacific Northwest constructed according to improved thermal standards," Energy, Elsevier, vol. 31(5), pages 677-693.
    2. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    3. Schweiker, Marcel & Shukuya, Masanori, 2010. "Comparative effects of building envelope improvements and occupant behavioural changes on the exergy consumption for heating and cooling," Energy Policy, Elsevier, vol. 38(6), pages 2976-2986, June.
    4. Ek, Kristina & Söderholm, Patrik, 2010. "The devil is in the details: Household electricity saving behavior and the role of information," Energy Policy, Elsevier, vol. 38(3), pages 1578-1587, March.
    5. Wilhite, Harold & Nakagami, Hidetoshi & Masuda, Takashi & Yamaga, Yukiko & Haneda, Hiroshi, 1996. "A cross-cultural analysis of household energy use behaviour in Japan and Norway," Energy Policy, Elsevier, vol. 24(9), pages 795-803, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad S. Aliero & Muhammad F. Pasha & David T. Smith & Imran Ghani & Muhammad Asif & Seung Ryul Jeong & Moveh Samuel, 2022. "Non-Intrusive Room Occupancy Prediction Performance Analysis Using Different Machine Learning Techniques," Energies, MDPI, vol. 15(23), pages 1-22, December.
    2. Claudiu Vasile Kifor & Alexandru Olteanu & Mihai Zerbes, 2023. "Key Performance Indicators for Smart Energy Systems in Sustainable Universities," Energies, MDPI, vol. 16(3), pages 1-19, January.
    3. Jonida Murataj & Rajat Gupta & Fergus Nicol, 2022. "Developing Indoor Temperature Profiles of Albanian Homes for Baseline Energy Models in Relation to Contextual Factors," Energies, MDPI, vol. 15(10), pages 1-23, May.
    4. Boni Sena & Sheikh Ahmad Zaki & Hom Bahadur Rijal & Jorge Alfredo Ardila-Rey & Nelidya Md Yusoff & Fitri Yakub & Farah Liana & Mohamad Zaki Hassan, 2021. "Development of an Electrical Energy Consumption Model for Malaysian Households, Based on Techno-Socioeconomic Determinant Factors," Sustainability, MDPI, vol. 13(23), pages 1-22, November.
    5. Chen, Chien-fei & Xu, Xiaojing & Adua, Lazarus & Briggs, Morgan & Nelson, Hannah, 2022. "Exploring the factors that influence energy use intensity across low-, middle-, and high-income households in the United States," Energy Policy, Elsevier, vol. 168(C).
    6. Roberta Pernetti & Riccardo Pinotti & Roberto Lollini, 2021. "Repository of Deep Renovation Packages Based on Industrialized Solutions: Definition and Application," Sustainability, MDPI, vol. 13(11), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    2. Sarran, Lucile & Gunay, H. Burak & O'Brien, William & Hviid, Christian A. & Rode, Carsten, 2021. "A data-driven study of thermostat overrides during demand response events," Energy Policy, Elsevier, vol. 153(C).
    3. Elnakat, Afamia & Gomez, Juan D., 2015. "Energy engenderment: An industrialized perspective assessing the importance of engaging women in residential energy consumption management," Energy Policy, Elsevier, vol. 82(C), pages 166-177.
    4. Marin, Giovanni & Palma, Alessandro, 2017. "Technology invention and adoption in residential energy consumption," Energy Economics, Elsevier, vol. 66(C), pages 85-98.
    5. Piselli, Cristina & Pisello, Anna Laura, 2019. "Occupant behavior long-term continuous monitoring integrated to prediction models: Impact on office building energy performance," Energy, Elsevier, vol. 176(C), pages 667-681.
    6. Kabeya Clement Mulamba, 2020. "Relationship between education and households? electricity-saving behaviour in South Africa: A multilevel logistic analysis," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2020(2), pages 51-74.
    7. Raihanian Mashhadi, Ardeshir & Behdad, Sara, 2018. "Discriminant effects of consumer electronics use-phase attributes on household energy prediction," Energy Policy, Elsevier, vol. 118(C), pages 346-355.
    8. Sunčana Slijepčević & Davor Mikulić & Kristijan Horvat, 2019. "Evaluation of the Cost-Effectiveness of the Installation of Heat-Cost Allocators in Multifamily Buildings in Croatia," Energies, MDPI, vol. 12(3), pages 1-20, February.
    9. Hori, Shiro & Kondo, Kayoko & Nogata, Daisuke & Ben, Han, 2013. "The determinants of household energy-saving behavior: Survey and comparison in five major Asian cities," Energy Policy, Elsevier, vol. 52(C), pages 354-362.
    10. Lee, Jae Yong & Yim, Taesu, 2021. "Energy and flow demand analysis of domestic hot water in an apartment complex using a smart meter," Energy, Elsevier, vol. 229(C).
    11. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    12. Sun, Yannan & Hao, Weituo & Chen, Yan & Liu, Bing, 2020. "Data-driven occupant-behavior analytics for residential buildings," Energy, Elsevier, vol. 206(C).
    13. Lillemo, Shuling Chen, 2014. "Measuring the effect of procrastination and environmental awareness on households' energy-saving behaviours: An empirical approach," Energy Policy, Elsevier, vol. 66(C), pages 249-256.
    14. Morgane Innocent & Agnès François-Lecompte & Nolwenn Roudaut, 2020. "Comparison of human versus technological support to reduce domestic electricity consumption in France," Post-Print hal-02450849, HAL.
    15. Małgorzata Sztorc, 2022. "The Implementation of the European Green Deal Strategy as a Challenge for Energy Management in the Face of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, April.
    16. Kelly, Scott & Shipworth, Michelle & Shipworth, David & Gentry, Michael & Wright, Andrew & Pollitt, Michael & Crawford-Brown, Doug & Lomas, Kevin, 2013. "Predicting the diversity of internal temperatures from the English residential sector using panel methods," Applied Energy, Elsevier, vol. 102(C), pages 601-621.
    17. Ohler, Adrienne M. & Billger, Sherrilyn M., 2014. "Does environmental concern change the tragedy of the commons? Factors affecting energy saving behaviors and electricity usage," Ecological Economics, Elsevier, vol. 107(C), pages 1-12.
    18. Xu, Xiaojing & Chen, Chien-fei & Zhu, Xiaojuan & Hu, Qinran, 2018. "Promoting acceptance of direct load control programs in the United States: Financial incentive versus control option," Energy, Elsevier, vol. 147(C), pages 1278-1287.
    19. Fang, Xingming & Wang, Lu & Sun, Chuanwang & Zheng, Xuemei & Wei, Jing, 2021. "Gap between words and actions: Empirical study on consistency of residents supporting renewable energy development in China," Energy Policy, Elsevier, vol. 148(PA).
    20. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy Demand Management and Social Norms," Energies, MDPI, vol. 13(15), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2635-:d:160207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.