IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3637-d816688.html
   My bibliography  Save this article

ReNFuzz-LF: A Recurrent Neurofuzzy System for Short-Term Load Forecasting

Author

Listed:
  • George Kandilogiannakis

    (Department of Informatics and Computer Engineering, Egaleo Park Campus, University of West Attica, 12243 Athens, Greece)

  • Paris Mastorocostas

    (Department of Informatics and Computer Engineering, Egaleo Park Campus, University of West Attica, 12243 Athens, Greece)

  • Athanasios Voulodimos

    (School of Electrical and Computer Engineering, National Technical University of Athens, 15773 Athens, Greece)

Abstract

A neurofuzzy system is proposed for short-term electric load forecasting. The fuzzy rule base of ReNFuzz-LF consists of rules with dynamic consequent parts that are small-scale recurrent neural networks with one hidden layer, whose neurons have local output feedback. The particular representation maintains the local learning nature of the typical static fuzzy model, since the dynamic consequent parts of the fuzzy rules can be considered as subsystems operating at the subspaces defined by the fuzzy premise parts, and they are interconnected through the defuzzification part. The Greek power system is examined, and hourly based predictions are extracted for the whole year. The recurrent nature of the forecaster leads to the use of a minimal set of inputs, since the temporal relations of the electric load time-series are identified without any prior knowledge of the appropriate past load values being necessary. An extensive simulation analysis is conducted, and the forecaster’s performance is evaluated using appropriate metrics (APE, RMSE, forecast error duration curve). ReNFuzz-LF performs efficiently, attaining an average percentage error of 1.35% and an average yearly absolute error of 86.3 MW. Finally, the performance of the proposed forecaster is compared to a series of Computational Intelligence based models, such that the learning characteristics of ReNFuzz-LF are highlighted.

Suggested Citation

  • George Kandilogiannakis & Paris Mastorocostas & Athanasios Voulodimos, 2022. "ReNFuzz-LF: A Recurrent Neurofuzzy System for Short-Term Load Forecasting," Energies, MDPI, vol. 15(10), pages 1-18, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3637-:d:816688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3637/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3637/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giasemidis, Georgios & Haben, Stephen & Lee, Tamsin & Singleton, Colin & Grindrod, Peter, 2017. "A genetic algorithm approach for modelling low voltage network demands," Applied Energy, Elsevier, vol. 203(C), pages 463-473.
    2. Dorian Skrobek & Jaroslaw Krzywanski & Marcin Sosnowski & Anna Kulakowska & Anna Zylka & Karolina Grabowska & Katarzyna Ciesielska & Wojciech Nowak, 2020. "Prediction of Sorption Processes Using the Deep Learning Methods (Long Short-Term Memory)," Energies, MDPI, vol. 13(24), pages 1-16, December.
    3. Mahmoud Elkazaz & Mark Sumner & David Thomas, 2019. "Real-Time Energy Management for a Small Scale PV-Battery Microgrid: Modeling, Design, and Experimental Verification," Energies, MDPI, vol. 12(14), pages 1-26, July.
    4. Bedi, Jatin & Toshniwal, Durga, 2019. "Deep learning framework to forecast electricity demand," Applied Energy, Elsevier, vol. 238(C), pages 1312-1326.
    5. Venkataramana Veeramsetty & Dongari Rakesh Chandra & Francesco Grimaccia & Marco Mussetta, 2022. "Short Term Electric Power Load Forecasting Using Principal Component Analysis and Recurrent Neural Networks," Forecasting, MDPI, vol. 4(1), pages 1-16, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. George Kandilogiannakis & Paris Mastorocostas & Athanasios Voulodimos & Constantinos Hilas, 2023. "Short-Term Load Forecasting of the Greek Power System Using a Dynamic Block-Diagonal Fuzzy Neural Network," Energies, MDPI, vol. 16(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Kandilogiannakis & Paris Mastorocostas & Athanasios Voulodimos & Constantinos Hilas, 2023. "Short-Term Load Forecasting of the Greek Power System Using a Dynamic Block-Diagonal Fuzzy Neural Network," Energies, MDPI, vol. 16(10), pages 1-20, May.
    2. Marcin Sosnowski & Jaroslaw Krzywanski & Norbert Skoczylas, 2022. "Adsorption Desalination and Cooling Systems: Advances in Design, Modeling and Performance," Energies, MDPI, vol. 15(11), pages 1-6, May.
    3. Cai, Benan & Long, Chengjun & Du, Qiaochen & Zhang, Wenchao & Hou, Yandong & Wang, Haijun & Cai, Weihua, 2023. "Analysis of a spray flash desalination system driven by low-grade waste heat with different intermittencies," Energy, Elsevier, vol. 277(C).
    4. Younes Zahraoui & Tarmo Korõtko & Argo Rosin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski & Ibrahim Alhamrouni, 2024. "AI Applications to Enhance Resilience in Power Systems and Microgrids—A Review," Sustainability, MDPI, vol. 16(12), pages 1-35, June.
    5. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    6. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    7. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    8. Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
    9. Ahmad, Tanveer & Chen, Huanxin, 2019. "Deep learning for multi-scale smart energy forecasting," Energy, Elsevier, vol. 175(C), pages 98-112.
    10. Diaa Salman & Mehmet Kusaf, 2021. "Short-Term Unit Commitment by Using Machine Learning to Cover the Uncertainty of Wind Power Forecasting," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
    11. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    12. Atif Maqbool Khan & Artur Wyrwa, 2024. "A Survey of Quantitative Techniques in Electricity Consumption—A Global Perspective," Energies, MDPI, vol. 17(19), pages 1-38, September.
    13. Md Tariqul Islam & M. J. Hossain, 2023. "Artificial Intelligence for Hosting Capacity Analysis: A Systematic Literature Review," Energies, MDPI, vol. 16(4), pages 1-33, February.
    14. Zeng, Sheng & Su, Bin & Zhang, Minglong & Gao, Yuan & Liu, Jun & Luo, Song & Tao, Qingmei, 2021. "Analysis and forecast of China's energy consumption structure," Energy Policy, Elsevier, vol. 159(C).
    15. Zizhen Cheng & Li Wang & Yumeng Yang, 2023. "A Hybrid Feature Pyramid CNN-LSTM Model with Seasonal Inflection Month Correction for Medium- and Long-Term Power Load Forecasting," Energies, MDPI, vol. 16(7), pages 1-18, March.
    16. Eşlik, Ardan Hüseyin & Akarslan, Emre & Hocaoğlu, Fatih Onur, 2022. "Short-term solar radiation forecasting with a novel image processing-based deep learning approach," Renewable Energy, Elsevier, vol. 200(C), pages 1490-1505.
    17. Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    18. Meng, Qinglong & Wei, Ying'an & Fan, Jingjing & Li, Yanbo & Zhao, Fan & Lei, Yu & Sun, Hang & Jiang, Le & Yu, Lingli, 2024. "Peak regulation strategies for ground source heat pump demand response of based on load forecasting: A case study of rural building in China," Renewable Energy, Elsevier, vol. 224(C).
    19. Tang, Qinghu & Guo, Hongye & Zheng, Kedi & Chen, Qixin, 2024. "Forecasting individual bids in real electricity markets through machine learning framework," Applied Energy, Elsevier, vol. 363(C).
    20. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3637-:d:816688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.