IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p156-d1308778.html
   My bibliography  Save this article

An Accurate Torque Control Strategy for Permanent Magnet Synchronous Motors Based on a Multi-Closed-Loop Regulation Design

Author

Listed:
  • Feifan Ji

    (School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China)

  • Qingyu Song

    (College of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China)

  • Yanjun Li

    (School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310015, China)

  • Ran Cao

    (Zhejiang Leapmotor Technology Co., Ltd., Hangzhou 311228, China)

Abstract

Torque control accuracy is a significant index of permanent magnet synchronous motors (PMSMs) and affects the safety of many applications greatly. Due to the strong nonlinearity of the motor as well as the disturbance of non-ideal factors such as temperature fluctuation and the parameter error in field-oriented control (FOC), it is undoubtedly difficult to accurately control the actual output torque. Meanwhile, the parameter differences between motors and sensors during mass production and the assembly process affect the consistency of output torque and even increase the factory failure rate of the motor. No torque sensor is implemented due to the cost and limited space. Accurate estimation of the motor torque becomes essential to realize the closed-loop feedback for torque and improve the accuracy at a lower cost. In this paper, a look-up table (LUT) model that can reflect the nonlinear mapping relationship between power and torque is established based on numerous offline experiments, which avoids the calculation of complex losses. A multi-closed-loop control strategy is proposed to dynamically adjust the amplitude and angle of the preset current command, respectively, to improve the torque accuracy. The effectiveness of the strategy has been validated by experimental results.

Suggested Citation

  • Feifan Ji & Qingyu Song & Yanjun Li & Ran Cao, 2023. "An Accurate Torque Control Strategy for Permanent Magnet Synchronous Motors Based on a Multi-Closed-Loop Regulation Design," Energies, MDPI, vol. 17(1), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:156-:d:1308778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pierpaolo Dini & Sergio Saponara, 2019. "Cogging Torque Reduction in Brushless Motors by a Nonlinear Control Technique," Energies, MDPI, vol. 12(11), pages 1-20, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Nicola & Claudiu-Ionel Nicola, 2022. "Improvement of Linear and Nonlinear Control for PMSM Using Computational Intelligence and Reinforcement Learning," Mathematics, MDPI, vol. 10(24), pages 1-34, December.
    2. Pierpaolo Dini & Sergio Saponara, 2020. "Design of an Observer-Based Architecture and Non-Linear Control Algorithm for Cogging Torque Reduction in Synchronous Motors," Energies, MDPI, vol. 13(8), pages 1-20, April.
    3. Cinzia Bernardeschi & Pierpaolo Dini & Andrea Domenici & Maurizio Palmieri & Sergio Saponara, 2020. "Formal Verification and Co-Simulation in the Design of a Synchronous Motor Control Algorithm," Energies, MDPI, vol. 13(16), pages 1-23, August.
    4. Pierpaolo Dini & Sergio Saponara, 2020. "Design of Adaptive Controller Exploiting Learning Concepts Applied to a BLDC-Based Drive System," Energies, MDPI, vol. 13(10), pages 1-20, May.
    5. Lucian Mihet-Popa & Sergio Saponara, 2021. "Power Converters, Electric Drives and Energy Storage Systems for Electrified Transportation and Smart Grid Applications," Energies, MDPI, vol. 14(14), pages 1-5, July.
    6. Chaelim Jeong & Dongho Lee & Jin Hur, 2019. "Mitigation Method of Slot Harmonic Cogging Torque Considering Unevenly Magnetized Permanent Magnets in PMSM," Energies, MDPI, vol. 12(20), pages 1-15, October.
    7. Ze Jiang & Xiaoyan Huang & Wenping Cao, 2022. "RLS-Based Algorithm for Detecting Partial Demagnetization under Both Stationary and Nonstationary Conditions," Energies, MDPI, vol. 15(10), pages 1-17, May.
    8. Kamila Jankowska & Mateusz Dybkowski, 2021. "A Current Sensor Fault Tolerant Control Strategy for PMSM Drive Systems Based on C ri Markers," Energies, MDPI, vol. 14(12), pages 1-18, June.
    9. Massimo Caruso & Antonino Oscar Di Tommaso & Rosario Miceli & Fabio Viola, 2022. "A Cogging Torque Minimization Procedure for Interior Permanent Magnet Synchronous Motors Based on a Progressive Modification of the Rotor Lamination Geometry," Energies, MDPI, vol. 15(14), pages 1-19, July.
    10. Changchuang Huang & Baoquan Kou & Xiaokun Zhao & Xu Niu & Lu Zhang, 2022. "Multi-Objective Optimization Design of a Stator Coreless Multidisc Axial Flux Permanent Magnet Motor," Energies, MDPI, vol. 15(13), pages 1-13, June.
    11. Zhiyan Zhang & Ming Zhang & Jing Yin & Jie Wu & Cunxiang Yang, 2022. "An Analytical Method for Calculating the Cogging Torque of a Consequent Pole Hybrid Excitation Synchronous Machine Based on Spatial 3D Field Simplification," Energies, MDPI, vol. 15(3), pages 1-13, January.
    12. Pierpaolo Dini & Sergio Saponara, 2022. "Review on Model Based Design of Advanced Control Algorithms for Cogging Torque Reduction in Power Drive Systems," Energies, MDPI, vol. 15(23), pages 1-29, November.
    13. Rafael de Farias Campos & Cesar da Silva Liberato & José de Oliveira & Tiago Jackson May Dezuo & Ademir Nied, 2022. "Dynamic Strategy for Effective Current Reduction in Brushless DC Synchronous Motors Fault Tolerant Operation," Energies, MDPI, vol. 15(24), pages 1-17, December.
    14. Wenyi Li & Yalin Wang & Yi Ding & Yi Yin, 2022. "Optimization Design of Packaging Insulation for Half-Bridge SiC MOSFET Power Module Based on Multi-Physics Simulation," Energies, MDPI, vol. 15(13), pages 1-19, July.
    15. T. A. Anuja & M. Arun Noyal Doss, 2021. "Reduction of Cogging Torque in Surface Mounted Permanent Magnet Brushless DC Motor by Adapting Rotor Magnetic Displacement," Energies, MDPI, vol. 14(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:156-:d:1308778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.