IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p8-d707462.html
   My bibliography  Save this article

A Case Study: Sediment Erosion in Francis Turbines Operated at the San Francisco Hydropower Plant in Ecuador

Author

Listed:
  • Cristian Cruzatty

    (Departamento de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170517, Ecuador)

  • Darwin Jimenez

    (Departamento de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170517, Ecuador)

  • Esteban Valencia

    (Departamento de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170517, Ecuador)

  • Ivan Zambrano

    (Departamento de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170517, Ecuador)

  • Christian Mora

    (Centro de Investigación y Recuperación de Turbinas Hidráulicas y Partes Industriales, CELEC EP, Baños de Agua Santa 180254, Ecuador)

  • Xianwu Luo

    (Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China)

  • Edgar Cando

    (Departamento de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito 170517, Ecuador)

Abstract

The operation of various types of turbomachines is importantly affected by sediment erosion. Francis turbines used for power generation typically suffer said effects due to the fact that they are used in sediment-laden rivers and are usually operated disregarding the long-term effect of the erosion on turbine performance. This investigation seeks to study the erosion rate for the main components of the turbines located at San Francisco hydropower plant in Pastaza, Ecuador. A sediment characterization study was performed in order to determine the properties of the particles present in Pastaza River and accurately predict their effect on the turbine flow passages. A numerical approach combining liquid–solid two-phase flow simulation and an erosion model was used to analyze the erosion rates at different operating conditions and determine wear patterns in the components. As expected, the results indicated that an increase in the erosion rate was obtained for higher intake flows. However, a dramatic increase in the erosion rate was observed when the turbine was operated at near-full-load conditions, specifically when guide vane opening exceeded a 90% aperture.

Suggested Citation

  • Cristian Cruzatty & Darwin Jimenez & Esteban Valencia & Ivan Zambrano & Christian Mora & Xianwu Luo & Edgar Cando, 2021. "A Case Study: Sediment Erosion in Francis Turbines Operated at the San Francisco Hydropower Plant in Ecuador," Energies, MDPI, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:8-:d:707462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ravi Koirala & Baoshan Zhu & Hari Prasad Neopane, 2016. "Effect of Guide Vane Clearance Gap on Francis Turbine Performance," Energies, MDPI, vol. 9(4), pages 1-14, April.
    2. Thapa, Biraj Singh & Thapa, Bhola & Dahlhaug, Ole G., 2012. "Empirical modelling of sediment erosion in Francis turbines," Energy, Elsevier, vol. 41(1), pages 386-391.
    3. Darmawi, & Sipahutar, Riman & Bernas, Siti Masreah & Imanuddin, Momon Sodik, 2013. "Renewable energy and hydropower utilization tendency worldwide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 213-215.
    4. David E. H. J. Gernaat & Patrick W. Bogaart & Detlef P. van Vuuren & Hester Biemans & Robin Niessink, 2017. "High-resolution assessment of global technical and economic hydropower potential," Nature Energy, Nature, vol. 2(10), pages 821-828, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koirala, Ravi & Neopane, Hari Prasad & Zhu, Baoshan & Thapa, Bhola, 2019. "Effect of sediment erosion on flow around guide vanes of Francis turbine," Renewable Energy, Elsevier, vol. 136(C), pages 1022-1027.
    2. Thapa, Biraj Singh & Dahlhaug, Ole Gunnar & Thapa, Bhola, 2015. "Sediment erosion in hydro turbines and its effect on the flow around guide vanes of Francis turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1100-1113.
    3. Chitrakar, Sailesh & Neopane, Hari Prasad & Dahlhaug, Ole Gunnar, 2016. "Study of the simultaneous effects of secondary flow and sediment erosion in Francis turbines," Renewable Energy, Elsevier, vol. 97(C), pages 881-891.
    4. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zhao, Zhigao & Yang, Jiandong, 2023. "Transient analysis of a hydropower plant with a super-long headrace tunnel during load acceptance: Instability mechanism and measurement verification," Energy, Elsevier, vol. 263(PA).
    5. Oyewo, Ayobami Solomon & Solomon, A.A. & Bogdanov, Dmitrii & Aghahosseini, Arman & Mensah, Theophilus Nii Odai & Ram, Manish & Breyer, Christian, 2021. "Just transition towards defossilised energy systems for developing economies: A case study of Ethiopia," Renewable Energy, Elsevier, vol. 176(C), pages 346-365.
    6. Muhammad Amir Raza & Muhammad Mohsin Aman & Altaf Hussain Rajpar & Mohamed Bashir Ali Bashir & Touqeer Ahmed Jumani, 2022. "Towards Achieving 100% Renewable Energy Supply for Sustainable Climate Change in Pakistan," Sustainability, MDPI, vol. 14(24), pages 1-23, December.
    7. Guo, Wencheng & Peng, Zhiyuan, 2019. "Hydropower system operation stability considering the coupling effect of water potential energy in surge tank and power grid," Renewable Energy, Elsevier, vol. 134(C), pages 846-861.
    8. Liu, Hailiang & Brown, Tom & Andresen, Gorm Bruun & Schlachtberger, David P. & Greiner, Martin, 2019. "The role of hydro power, storage and transmission in the decarbonization of the Chinese power system," Applied Energy, Elsevier, vol. 239(C), pages 1308-1321.
    9. Goyal, Rahul & Gandhi, Bhupendra K., 2018. "Review of hydrodynamics instabilities in Francis turbine during off-design and transient operations," Renewable Energy, Elsevier, vol. 116(PA), pages 697-709.
    10. Pang, Jiayang & Liu, Huizi & Liu, Xiaobing & Yang, Han & Peng, Yuanjie & Zeng, Yongzhong & Yu, Zhishun, 2022. "Study on sediment erosion of high head Francis turbine runner in Minjiang River basin," Renewable Energy, Elsevier, vol. 192(C), pages 849-858.
    11. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.
    12. Koirala, Ravi & Neopane, Hari Prasad & Shrestha, Oblique & Zhu, Baoshan & Thapa, Bhola, 2017. "Selection of guide vane profile for erosion handling in Francis turbines," Renewable Energy, Elsevier, vol. 112(C), pages 328-336.
    13. Haas, Jannik & Prieto-Miranda, Luis & Ghorbani, Narges & Breyer, Christian, 2022. "Revisiting the potential of pumped-hydro energy storage: A method to detect economically attractive sites," Renewable Energy, Elsevier, vol. 181(C), pages 182-193.
    14. Daqing Zhou & Huixiang Chen & Jie Zhang & Shengwen Jiang & Jia Gui & Chunxia Yang & An Yu, 2019. "Numerical Study on Flow Characteristics in a Francis Turbine during Load Rejection," Energies, MDPI, vol. 12(4), pages 1-15, February.
    15. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    16. Ge, Xinfeng & Sun, Jie & Zhou, Ye & Cai, Jianguo & Zhang, Hui & Zhang, Lei & Ding, Mingquan & Deng, Chaozhong & Binama, Maxime & Zheng, Yuan, 2021. "Experimental and Numerical studies on Opening and Velocity Influence on Sediment Erosion of Pelton Turbine Buckets," Renewable Energy, Elsevier, vol. 173(C), pages 1040-1056.
    17. Chen, Ji & Shi, Haiyun & Sivakumar, Bellie & Peart, Mervyn R., 2016. "Population, water, food, energy and dams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 18-28.
    18. Rudimar Caricimi & Géremi Gilson Dranka & Dalmarino Setti & Paula Ferreira, 2022. "Reframing the Selection of Hydraulic Turbines Integrating Analytical Hierarchy Process (AHP) and Fuzzy VIKOR Multi-Criteria Methods," Energies, MDPI, vol. 15(19), pages 1-26, October.
    19. Jelena Cvijović & Vladimir Obradović & Marija Todorović, 2021. "Stakeholder Management and Project Sustainability—A Throw of the Dice," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    20. Anuja Shaktawat & Shelly Vadhera, 2021. "Risk management of hydropower projects for sustainable development: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 45-76, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:8-:d:707462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.