IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2564-d546424.html
   My bibliography  Save this article

Self-Tuning Observer for Sensor Fault-Tolerant Control of Induction Motor Drive

Author

Listed:
  • Martin Kuchar

    (Department of Electronics, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 70800 Ostrava, Czech Republic)

  • Petr Palacky

    (Department of Electronics, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 70800 Ostrava, Czech Republic)

  • Petr Simonik

    (Department of Electronics, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 70800 Ostrava, Czech Republic)

  • Jan Strossa

    (Department of Electronics, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 70800 Ostrava, Czech Republic)

Abstract

This paper introduces a new solution for the speed and current sensor fault-tolerant direct field-oriented control of induction motor drives. Two self-adjusting observers derived from a modified current-based model reference adaptive system (CB-MRAS) are presented. Finally, the recursive least squares method was used to estimate the parameters of the used observers. The method, in the proposed solution, provides a very fast and accurate finding of the observer parameters while maintaining relative simplicity and ease of implementation. The presented algorithm eliminates the CB-MRAS observer dependence on the induction motor parameters and also compensates for the inaccuracies in the evaluation of the stator voltage vector. The proposed fault-tolerant control offers the drive operation while either a speed sensor or one/two current sensors fault occurs. The drive still works with the direct field-oriented control even when no current sensors are healthy. The proposed scheme was simulated in the MATLAB/Simulink software environment. Then the algorithm was implemented in a floating-point digital signal controller (DSC) TMS320F28335 and tested on an induction motor drive prototype of rated power of 2.2 kW to validate the proposed schemes.

Suggested Citation

  • Martin Kuchar & Petr Palacky & Petr Simonik & Jan Strossa, 2021. "Self-Tuning Observer for Sensor Fault-Tolerant Control of Induction Motor Drive," Energies, MDPI, vol. 14(9), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2564-:d:546424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2564/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2564/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuri Merizalde & Luis Hernández-Callejo & Oscar Duque-Perez, 2017. "State of the Art and Trends in the Monitoring, Detection and Diagnosis of Failures in Electric Induction Motors," Energies, MDPI, vol. 10(7), pages 1-34, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadeusz Białoń & Roman Niestrój & Jarosław Michalak & Marian Pasko, 2021. "Induction Motor PI Observer with Reduced-Order Integrating Unit," Energies, MDPI, vol. 14(16), pages 1-12, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sebastian Berhausen & Tomasz Jarek, 2021. "Method of Limiting Shaft Voltages in AC Electric Machines," Energies, MDPI, vol. 14(11), pages 1-19, June.
    2. Mitja Nemec & Vanja Ambrožič & Rastko Fišer & David Nedeljković & Klemen Drobnič, 2019. "Induction Motor Broken Rotor Bar Detection Based on Rotor Flux Angle Monitoring," Energies, MDPI, vol. 12(5), pages 1-17, February.
    3. Piotr Kołodziejek & Daniel Wachowiak, 2022. "Fast Real-Time RDFT- and GDFT-Based Direct Fault Diagnosis of Induction Motor Drive," Energies, MDPI, vol. 15(3), pages 1-14, February.
    4. Camila Paes Salomon & Wilson Cesar Sant’Ana & Germano Lambert-Torres & Luiz Eduardo Borges da Silva & Erik Leandro Bonaldi & Levy Ely de Lacerda De Oliveira, 2018. "Comparison among Methods for Induction Motor Low-Intrusive Efficiency Evaluation Including a New AGT Approach with a Modified Stator Resistance," Energies, MDPI, vol. 11(4), pages 1-21, March.
    5. Muhammad Zuhaib & Faraz Ahmed Shaikh & Wajiha Tanweer & Abdullah M. Alnajim & Saleh Alyahya & Sheroz Khan & Muhammad Usman & Muhammad Islam & Mohammad Kamrul Hasan, 2022. "Faults Feature Extraction Using Discrete Wavelet Transform and Artificial Neural Network for Induction Motor Availability Monitoring—Internet of Things Enabled Environment," Energies, MDPI, vol. 15(21), pages 1-32, October.
    6. Arkadiusz Duda & Maciej Sułowicz, 2020. "A New Effective Method of Induction Machine Condition Assessment Based on Zero-Sequence Voltage (ZSV) Symptoms," Energies, MDPI, vol. 13(14), pages 1-26, July.
    7. Angel Arranz-Gimon & Angel Zorita-Lamadrid & Daniel Morinigo-Sotelo & Oscar Duque-Perez, 2021. "A Review of Total Harmonic Distortion Factors for the Measurement of Harmonic and Interharmonic Pollution in Modern Power Systems," Energies, MDPI, vol. 14(20), pages 1-38, October.
    8. Mateusz Dybkowski & Szymon Antoni Bednarz, 2019. "Modified Rotor Flux Estimators for Stator-Fault-Tolerant Vector Controlled Induction Motor Drives," Energies, MDPI, vol. 12(17), pages 1-21, August.
    9. Claudio Rossi & Yasser Gritli & Alessio Pilati & Gabriele Rizzoli & Angelo Tani & Domenico Casadei, 2020. "High Resistance Fault-Detection and Fault-Tolerance for Asymmetrical Six-Phase Surface-Mounted AC Permanent Magnet Synchronous Motor Drives," Energies, MDPI, vol. 13(12), pages 1-18, June.
    10. Yuriy Zhukovskiy & Aleksandra Buldysko & Ilia Revin, 2023. "Induction Motor Bearing Fault Diagnosis Based on Singular Value Decomposition of the Stator Current," Energies, MDPI, vol. 16(8), pages 1-23, April.
    11. Zabdur Rehman & Kwanjae Seong, 2018. "Three-D Numerical Thermal Analysis of Electric Motor with Cooling Jacket," Energies, MDPI, vol. 11(1), pages 1-15, January.
    12. Arkadiusz Duda & Piotr Drozdowski, 2020. "Induction Motor Fault Diagnosis Based on Zero-Sequence Current Analysis," Energies, MDPI, vol. 13(24), pages 1-25, December.
    13. Yatai Ji & Paolo Giangrande & Vincenzo Madonna & Weiduo Zhao & Michael Galea, 2021. "Reliability-Oriented Design of Inverter-Fed Low-Voltage Electrical Machines: Potential Solutions," Energies, MDPI, vol. 14(14), pages 1-25, July.
    14. Andre S. Barcelos & Antonio J. Marques Cardoso, 2021. "Current-Based Bearing Fault Diagnosis Using Deep Learning Algorithms," Energies, MDPI, vol. 14(9), pages 1-14, April.
    15. Camila Paes Salomon & Claudio Ferreira & Wilson Cesar Sant’Ana & Germano Lambert-Torres & Luiz Eduardo Borges da Silva & Erik Leandro Bonaldi & Levy Ely de Lacerda de Oliveira & Bruno Silva Torres, 2019. "A Study of Fault Diagnosis Based on Electrical Signature Analysis for Synchronous Generators Predictive Maintenance in Bulk Electric Systems," Energies, MDPI, vol. 12(8), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2564-:d:546424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.