IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i3p912-d735458.html
   My bibliography  Save this article

The Use of Cold Spraying and Micro-Arc Oxidation Techniques for the Repairing and Wear Resistance Improvement of Motor Electric Bearing Shields

Author

Listed:
  • Yury Kuznetsov

    (Department of Reliability and Repair of Machines, Faculty of Agricultural Engineering and Energy Supply, Orel State Agrarian University Named after N.V. Parakhin, 302019 Orel, Russia)

  • Igor Kravchenko

    (Department of Technical Service of Machines and Equipment, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy (RSAU—MTAA), 127550 Moscow, Russia
    Mechanical Engineering Research Institute, Russian Academy of Sciences, 101990 Moscow, Russia)

  • Dmitry Gerashchenkov

    (NRC “Kurchatov Institute”—CRISM “Prometey”, 191015 St. Petersburg, Russia)

  • Mikhail Markov

    (NRC “Kurchatov Institute”—CRISM “Prometey”, 191015 St. Petersburg, Russia)

  • Vadim Davydov

    (Higher School of Applied Physics and Space Technologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
    All Russian Research Institute of Phytopathology, 143050 Moscow, Russia)

  • Anna Mozhayko

    (Higher School of Applied Physics and Space Technologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia)

  • Valentin Dudkin

    (Department of Photonics and Communication Lines, Faculty of Infocommunication Networks and Systems, The Bonch-Bruevich St. Petersburg State University of Telecommunication, 193232 St. Petersburg, Russia)

  • Alina Bykova

    (NRC “Kurchatov Institute”—CRISM “Prometey”, 191015 St. Petersburg, Russia)

Abstract

Reliability is one of the most important requirements for electric motor installations. Bearing assembly is a common source of failure for most electric motors. One of the main reasons for such failures is the wear of the bearing seat of the end shield. This paper presents a combined technology for increasing the durability of the bearing bores of electric motor bearing shields made of aluminum alloys. The technological concept is that a worn-out end-shield bore is firstly restored by supersonic gas-dynamic spraying, and secondly, in order to improve anti-wear properties, it is strengthened by micro-arc oxidation. The adhesion of coatings has been studied, and the wear resistance of the formed coatings has been evaluated. Based on the performed studies, it can be assumed that the service life of the bearing assembly of an electric motor restored by gas-dynamic spraying with the novel technology of micro-arc oxidation in real operating conditions will increase on average by 3–4 times. The developed technology is recommended for repair, maintenance, or other technical services dealing with the restoration and hardening of worn-out parts.

Suggested Citation

  • Yury Kuznetsov & Igor Kravchenko & Dmitry Gerashchenkov & Mikhail Markov & Vadim Davydov & Anna Mozhayko & Valentin Dudkin & Alina Bykova, 2022. "The Use of Cold Spraying and Micro-Arc Oxidation Techniques for the Repairing and Wear Resistance Improvement of Motor Electric Bearing Shields," Energies, MDPI, vol. 15(3), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:912-:d:735458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/3/912/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/3/912/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hisahide Nakamura & Yukio Mizuno, 2020. "Method for Diagnosing a Short-Circuit Fault in the Stator Winding of a Motor Based on Parameter Identification of Features and a Support Vector Machine," Energies, MDPI, vol. 13(9), pages 1-15, May.
    2. Israel Zamudio-Ramirez & Roque Alfredo Osornio-Rios & Miguel Trejo-Hernandez & Rene de Jesus Romero-Troncoso & Jose Alfonso Antonino-Daviu, 2019. "Smart-Sensors to Estimate Insulation Health in Induction Motors via Analysis of Stray Flux," Energies, MDPI, vol. 12(9), pages 1-16, May.
    3. Muhammad H. Iftikhar & Byung-Gun Park & Ji-Won Kim, 2021. "Design and Analysis of a Five-Phase Permanent-Magnet Synchronous Motor for Fault-Tolerant Drive," Energies, MDPI, vol. 14(2), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed G. Mahmoud A. Aziz & Almoataz Y. Abdelaziz & Ziad M. Ali & Ahmed A. Zaki Diab, 2023. "A Comprehensive Examination of Vector-Controlled Induction Motor Drive Techniques," Energies, MDPI, vol. 16(6), pages 1-32, March.
    2. Haneen Ghanayem & Mohammad Alathamneh & R. M. Nelms, 2023. "Decoupled Speed and Flux Control of a Three-Phase Permanent Magnet Synchronous Motor under an Open-Circuit Fault Using a PR Current Controller," Energies, MDPI, vol. 16(14), pages 1-15, July.
    3. Mateusz Dybkowski & Szymon Antoni Bednarz, 2019. "Modified Rotor Flux Estimators for Stator-Fault-Tolerant Vector Controlled Induction Motor Drives," Energies, MDPI, vol. 12(17), pages 1-21, August.
    4. Miguel Louro & Luís Ferreira, 2021. "Underground MV Network Failures’ Waveform Characteristics—An Investigation," Energies, MDPI, vol. 14(5), pages 1-14, February.
    5. Konrad Górny & Piotr Kuwałek & Wojciech Pietrowski, 2021. "Increasing Electric Vehicles Reliability by Non-Invasive Diagnosis of Motor Winding Faults," Energies, MDPI, vol. 14(9), pages 1-14, April.
    6. Hongfeng Li & Lifeng Cui & Zigang Ma & Bin Li, 2020. "Multi-Objective Optimization of the Halbach Array Permanent Magnet Spherical Motor Based on Support Vector Machine," Energies, MDPI, vol. 13(21), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:3:p:912-:d:735458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.