IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2317-d539568.html
   My bibliography  Save this article

Support Vector Machine Based Fault Location Identification in Microgrids Using Interharmonic Injection

Author

Listed:
  • Alireza Forouzesh

    (Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran)

  • Mohammad S. Golsorkhi

    (Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran)

  • Mehdi Savaghebi

    (Electrical Engineering Section, Department of Mechanical and Electrical Engineering, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark)

  • Mehdi Baharizadeh

    (Department of Electrical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan 8418148499, Iran)

Abstract

This paper proposes an algorithm for detection and identification of the location of short circuit faults in islanded AC microgrids (MGs) with meshed topology. Considering the low level of fault current and dependency of the current angle on the control strategies, the legacy overcurrent protection schemes are not effective in in islanded MGs. To overcome this issue, the proposed algorithm detects faults based on the rms voltages of the distributed energy resources (DERs) by means of support vector machine classifiers. Upon detection of a fault, the DER which is electrically closest to the fault injects three interharmonic currents. The faulty zone is identified by comparing the magnitude of the interharmonic currents flowing through each zone. Then, the second DER connected to the faulty zone injects distinctive interharmonic currents and the resulting interharmonic voltages are measured at the terminal of each of these DERs. Using the interharmonic voltages as its features, a multi-class support vector machine identifies the fault location within the faulty zone. Simulations are conducted on a test MG to obtain a dataset comprising scenarios with different fault locations, varying fault impedances, and changing loads. The test results show that the proposed algorithm reliably detects the faults and the precision of fault location identification is above 90%.

Suggested Citation

  • Alireza Forouzesh & Mohammad S. Golsorkhi & Mehdi Savaghebi & Mehdi Baharizadeh, 2021. "Support Vector Machine Based Fault Location Identification in Microgrids Using Interharmonic Injection," Energies, MDPI, vol. 14(8), pages 1-14, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2317-:d:539568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2317/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2317/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shahriar Rahman Fahim & Subrata K. Sarker & S. M. Muyeen & Md. Rafiqul Islam Sheikh & Sajal K. Das, 2020. "Microgrid Fault Detection and Classification: Machine Learning Based Approach, Comparison, and Reviews," Energies, MDPI, vol. 13(13), pages 1-22, July.
    2. Patnaik, Bhaskar & Mishra, Manohar & Bansal, Ramesh C. & Jena, Ranjan Kumar, 2020. "AC microgrid protection – A review: Current and future prospective," Applied Energy, Elsevier, vol. 271(C).
    3. Teke Gush & Syed Basit Ali Bukhari & Khawaja Khalid Mehmood & Samuel Admasie & Ji-Soo Kim & Chul-Hwan Kim, 2019. "Intelligent Fault Classification and Location Identification Method for Microgrids Using Discrete Orthonormal Stockwell Transform-Based Optimized Multi-Kernel Extreme Learning Machine," Energies, MDPI, vol. 12(23), pages 1-16, November.
    4. Barra, P.H.A. & Coury, D.V. & Fernandes, R.A.S., 2020. "A survey on adaptive protection of microgrids and distribution systems with distributed generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    5. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Younis M. Nsaif & Molla Shahadat Hossain Lipu & Aini Hussain & Afida Ayob & Yushaizad Yusof & Muhammad Ammirrul A. M. Zainuri, 2022. "A New Voltage Based Fault Detection Technique for Distribution Network Connected to Photovoltaic Sources Using Variational Mode Decomposition Integrated Ensemble Bagged Trees Approach," Energies, MDPI, vol. 15(20), pages 1-20, October.
    2. Muhammad Uzair & Mohsen Eskandari & Li Li & Jianguo Zhu, 2022. "Machine Learning Based Protection Scheme for Low Voltage AC Microgrids," Energies, MDPI, vol. 15(24), pages 1-19, December.
    3. Faisal Mumtaz & Haseeb Hassan Khan & Amad Zafar & Muhammad Umair Ali & Kashif Imran, 2022. "A State-Observer-Based Protection Scheme for AC Microgrids with Recurrent Neural Network Assistance," Energies, MDPI, vol. 15(22), pages 1-22, November.
    4. Hamed Rezapour & Sadegh Jamali & Alireza Bahmanyar, 2023. "Review on Artificial Intelligence-Based Fault Location Methods in Power Distribution Networks," Energies, MDPI, vol. 16(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yijin Li & Jianhua Lin & Geng Niu & Ming Wu & Xuteng Wei, 2021. "A Hilbert–Huang Transform-Based Adaptive Fault Detection and Classification Method for Microgrids," Energies, MDPI, vol. 14(16), pages 1-16, August.
    2. Tabassum, Tambiara & Toker, Onur & Khalghani, Mohammad Reza, 2024. "Cyber–physical anomaly detection for inverter-based microgrid using autoencoder neural network," Applied Energy, Elsevier, vol. 355(C).
    3. Jorge De La Cruz & Eduardo Gómez-Luna & Majid Ali & Juan C. Vasquez & Josep M. Guerrero, 2023. "Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends," Energies, MDPI, vol. 16(5), pages 1-37, February.
    4. Pavel Ilyushin & Vladislav Volnyi & Konstantin Suslov & Sergey Filippov, 2022. "Review of Methods for Addressing Challenging Issues in the Operation of Protection Devices in Microgrids with Voltages of up to 1 kV That Integrates Distributed Energy Resources," Energies, MDPI, vol. 15(23), pages 1-22, December.
    5. Aushiq Ali Memon & Kimmo Kauhaniemi, 2020. "An Adaptive Protection for Radial AC Microgrid Using IEC 61850 Communication Standard: Algorithm Proposal Using Offline Simulations," Energies, MDPI, vol. 13(20), pages 1-31, October.
    6. Raad Salih Jawad & Hafedh Abid, 2023. "HVDC Fault Detection and Classification with Artificial Neural Network Based on ACO-DWT Method," Energies, MDPI, vol. 16(3), pages 1-18, January.
    7. Patnaik, Bhaskar & Mishra, Manohar & Bansal, Ramesh C. & Jena, Ranjan Kumar, 2020. "AC microgrid protection – A review: Current and future prospective," Applied Energy, Elsevier, vol. 271(C).
    8. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    9. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.
    10. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    11. Bhattacharjee, Vikram & Khan, Irfan, 2018. "A non-linear convex cost model for economic dispatch in microgrids," Applied Energy, Elsevier, vol. 222(C), pages 637-648.
    12. Kolasa, Piotr & Janowski, Mirosław, 2017. "Study of possibilities to store energy virtually in a grid (VESS) with the use of smart metering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1513-1517.
    13. He, Jiawei & Mu, Rui & Li, Bin & Li, Ye & Zhou, Bohao & Xie, Zhongrun & Wang, Wenbo, 2024. "Applicability boundary calculation for directional current protection in distribution networks with accessed PV power sources," Applied Energy, Elsevier, vol. 370(C).
    14. Jeziel Vázquez & Elias J. J. Rodriguez & Jaime Arau & Nimrod Vázquez, 2021. "A di/dt Detection Circuit for DC Unidirectional Breaker Based on Inductor Transient Behaviour," Sustainability, MDPI, vol. 13(16), pages 1-18, August.
    15. Huang, Pengluan & Hu, Guoqiang & Zhao, Xiaodong & Lu, Luyi & Ding, Honggang & Li, Jianlan, 2022. "Effect of organics on the adhesion of dust to PV panel surfaces under condensation," Energy, Elsevier, vol. 261(PB).
    16. Moshammed Nishat Tasnim & Tofael Ahmed & Monjila Afrin Dorothi & Shameem Ahmad & G. M. Shafiullah & S. M. Ferdous & Saad Mekhilef, 2023. "Voltage-Oriented Control-Based Three-Phase, Three-Leg Bidirectional AC–DC Converter with Improved Power Quality for Microgrids," Energies, MDPI, vol. 16(17), pages 1-32, August.
    17. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    18. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    19. Khalfan Al Kharusi & Abdelsalam El Haffar & Mostefa Mesbah, 2022. "Fault Detection and Classification in Transmission Lines Connected to Inverter-Based Generators Using Machine Learning," Energies, MDPI, vol. 15(15), pages 1-23, July.
    20. Gonzalez de Durana, Jose & Barambones, Oscar, 2018. "Technology-free microgrid modeling with application to demand side management," Applied Energy, Elsevier, vol. 219(C), pages 165-178.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2317-:d:539568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.