Author
Listed:
- Meisam Arabpour
(Department of Electrical Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran)
- Alimorad Khajehzadeh
(Department of Electrical Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran)
- Mehdi Jafari Shahbazzadeh
(Department of Electrical Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran)
- Mahdiyeh Eslami
(Department of Electrical Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran)
Abstract
In this research, the issue of non-technical losses in the distribution network was addressed, which should have been detected. Distribution networks and transmission lines have different parameters, so their state estimation and modeling are completely different. This problem causes the detection of non-technical losses in the distribution network by mode conversion to suffer a series of computational complications. Therefore, an attempt has been made to improve the parameters of voltage, primary current, passing current and bus energy along with error estimation after estimating the state of the distributed network so that non-technical losses can be detected. Therefore, a hybrid approach based on observer-based fuzzy neural network filter and genetic algorithm is used. Due to the existence of errors, the fuzzy neural network filter has been used, the reason for its three-dimensionality is that the system is non-linear and the errors and states may be different at different times. This research, in one case, has estimated the state of the distribution network with the aim of detecting non-technical losses. The observer can check these different situations at different times. Also, because the problem of detecting non-technical losses in the distribution network based on state estimation is assumed as a hard problem, therefore, the distribution network environment can be assumed as a main platform as a search environment for optimization algorithms. . Therefore, the use of intelligent algorithms from the family of fuzzy neural network and evolutionary algorithms and crowd intelligence can be interesting for estimating the optimal state with the aim of detecting non-technical losses in the distribution network. Hence, genetic algorithm is also used for optimization. After considering the main parameters to estimate the system state with the proposed approach, the results obtained from the simulation indicate the improvement of the state estimation and the detection of non-technical losses in the distribution network along with the minimization of the error estimation compared to the initial state.
Suggested Citation
Meisam Arabpour & Alimorad Khajehzadeh & Mehdi Jafari Shahbazzadeh & Mahdiyeh Eslami, 2024.
"Parallel Mode Estimation Improvement in Power Networks based on Optimal ANFIS Approach,"
International Journal of Research and Scientific Innovation, International Journal of Research and Scientific Innovation (IJRSI), vol. 11(11), pages 978-1001, November.
Handle:
RePEc:bjc:journl:v:11:y:2024:i:11:p:978-1001
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bjc:journl:v:11:y:2024:i:11:p:978-1001. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dr. Renu Malsaria (email available below). General contact details of provider: https://rsisinternational.org/journals/ijrsi/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.