IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipds0360544221025767.html
   My bibliography  Save this article

Design of control valve with low energy consumption based on Isight platform

Author

Listed:
  • Zhang, Xinbiao
  • Xie, Yudong
  • Han, Jiazhen
  • Wang, Yong

Abstract

The pressure drop of a control valve is directly associated with the energy consumption of the control system. The conventional design method of a control valve results in high energy consumption, while the control ability deviates from the design goal. Additionally, repeated corrections via flow experiments are inefficient. To efficiently design a low-energy-consumption control valve that satisfies control requirements, a novel design method is proposed herein. It is parametrically defined in Sculptor software based on the conventional valve spool. Various software packages are integrated using script files in the Isight platform. An approximate model is constructed using sample points generated based on the design of experiments; subsequently, it is solved using an optimization algorithm. Simulation results indicate that the output pressure of the pump and the average pressure drop of the control valve decrease by 4.38% and 5.51%, respectively, under the same flow rate. The working flow characteristics curve exhibits high linearity, implying that energy conservation is realized while the control ability is improved. Moreover, the force on the valve spool decrease by 1.36% on average, while the pressure and velocity in the flow field are reduced.

Suggested Citation

  • Zhang, Xinbiao & Xie, Yudong & Han, Jiazhen & Wang, Yong, 2022. "Design of control valve with low energy consumption based on Isight platform," Energy, Elsevier, vol. 239(PD).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025767
    DOI: 10.1016/j.energy.2021.122328
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221025767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122328?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asim, Taimoor & Oliveira, Antonio & Charlton, Matthew & Mishra, Rakesh, 2019. "Improved design of a multi-stage continuous-resistance trim for minimum energy loss in control valves," Energy, Elsevier, vol. 174(C), pages 954-971.
    2. Lin, Zhen-hao & Li, Jun-ye & Jin, Zhi-jiang & Qian, Jin-yuan, 2021. "Fluid dynamic analysis of liquefied natural gas flow through a cryogenic ball valve in liquefied natural gas receiving stations," Energy, Elsevier, vol. 226(C).
    3. Huang, Junbing & Lai, Yali & Wang, Yajun & Hao, Yu, 2020. "Energy-saving research and development activities and energy intensity in China: A regional comparison perspective," Energy, Elsevier, vol. 213(C).
    4. Chen, Fu-qiang & Jin, Zhi-jiang, 2021. "Throttling components effect on aerodynamic performance of superheated steam flow in multi-stage high pressure reducing valve," Energy, Elsevier, vol. 230(C).
    5. Zhu, Baoshan & Wang, Xuhe & Tan, Lei & Zhou, Dongyue & Zhao, Yue & Cao, Shuliang, 2015. "Optimization design of a reversible pump–turbine runner with high efficiency and stability," Renewable Energy, Elsevier, vol. 81(C), pages 366-376.
    6. Qian, Jin-yuan & Wei, Lin & Zhang, Ming & Chen, Fu-qiang & Chen, Li-long & Jiang, Wei-kang & Jin, Zhi-jiang, 2017. "Flow rate analysis of compressible superheated steam through pressure reducing valves," Energy, Elsevier, vol. 135(C), pages 650-658.
    7. Yuqi Wang & Xinhui Liu & Jinshi Chen & Yafang Han & Siyuan Liu & Dongyang Huo, 2021. "Investigation on the Characteristics of a Combination Microflow Control Valve," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju, Jinyong & Xie, Yudong & Han, Jiazhen & Wang, Yong & Wang, Haibo, 2024. "Performance improvement of the self-power control valve based on digital twin technology," Energy, Elsevier, vol. 300(C).
    2. Zhang, Zhi & Sun, Baojiang & Wang, Zhiyuan & Mu, Xiaojie & Sun, Dalin, 2023. "Multiphase throttling characteristic analysis and structure optimization design of throttling valve in managed pressure drilling," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Naian & Wan, Shengjun & Du, Wei & Zhang, Shangyi & Luo, Lei, 2024. "Effects of the geometrical features of flow paths on the flow behaviour of a multi-stage labyrinth pressure reducing valve throttling components," Energy, Elsevier, vol. 296(C).
    2. Li, Haoyang & Lu, Hanan & Li, Qiushi, 2024. "Numerical investigations of the influences of valve spool structure on the eccentric jet flow characteristic in high-pressure angle valves," Energy, Elsevier, vol. 298(C).
    3. Zhang, Guang & Wang, Wei Wei & Wu, Ze Yong & Chen, De Sheng & Kim, Heuy Dong & Lin, Zhe, 2023. "Effect of the opening degree on evolution of cryogenic cavitation through a butterfly valve," Energy, Elsevier, vol. 283(C).
    4. Wei Yang & Benqing Liu & Ruofu Xiao, 2019. "Three-Dimensional Inverse Design Method for Hydraulic Machinery," Energies, MDPI, vol. 12(17), pages 1-19, August.
    5. Wang, Kaijie & Wang, Shuli & Meng, Puyu & Wang, Chengpeng & Li, Yuhai & Zheng, Wenxian & Liu, Jun & Kou, Jiawen, 2023. "Strategies employed in the design and optimization of pump as turbine runner," Renewable Energy, Elsevier, vol. 216(C).
    6. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    7. Qin, Yonglin & Li, Deyou & Wang, Hongjie & Liu, Zhansheng & Wei, Xianzhu & Wang, Xiaohang, 2022. "Multi-objective optimization design on high pressure side of a pump-turbine runner with high efficiency," Renewable Energy, Elsevier, vol. 190(C), pages 103-120.
    8. Yan, Junna & Li, Yingzhu & Su, Bin & Ng, Tsan Sheng, 2022. "Contributors and drivers of Chinese energy use and intensity from regional and demand perspectives, 2012-2015-2017," Energy Economics, Elsevier, vol. 115(C).
    9. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    10. Wang, He & Chen, Zhen & Huang, Jiahai, 2021. "Improvement of vibration frequency and energy efficiency in the uniaxial electro-hydraulic shaking tables for sinusoidal vibration waveform," Energy, Elsevier, vol. 218(C).
    11. Wen, Huwei & Li, Nuoyan & Lee, Chien-Chiang, 2021. "Energy intensity of manufacturing enterprises under competitive pressure from the informal sector: Evidence from developing and emerging countries," Energy Economics, Elsevier, vol. 104(C).
    12. Ma, Zhe & Zhu, Baoshan, 2020. "Pressure fluctuations in vaneless space of pump-turbines with large blade lean runners in the S- shaped region," Renewable Energy, Elsevier, vol. 153(C), pages 1283-1295.
    13. Linhai Liu & Baoshan Zhu & Li Bai & Xiaobing Liu & Yue Zhao, 2017. "Parametric Design of an Ultrahigh-Head Pump-Turbine Runner Based on Multiobjective Optimization," Energies, MDPI, vol. 10(8), pages 1-16, August.
    14. Pei, Ji & Shen, Jiawei & Wang, Wenjie & Yuan, Shouqi & Zhao, Jiantao, 2024. "Evaluating hydraulic dissipation in a reversible mixed-flow pump for micro-pumped hydro storage based on entropy production theory," Renewable Energy, Elsevier, vol. 225(C).
    15. Chen, Yu & Lin, Boqiang, 2021. "How does infrastructure affect energy services?," Energy, Elsevier, vol. 231(C).
    16. Lijun Zeng & Wencheng Zhang & Muyi Yang, 2023. "A Bi-Level Optimization Model for Inter-Provincial Energy Consumption Transfer Tax in China," Energies, MDPI, vol. 16(21), pages 1-20, October.
    17. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.
    18. Li, Deyou & Qin, Yonglin & Wang, Jianpeng & Zhu, Yutong & Wang, Hongjie & Wei, Xianzhu, 2022. "Optimization of blade high-pressure edge to reduce pressure fluctuations in pump-turbine hump region," Renewable Energy, Elsevier, vol. 181(C), pages 24-38.
    19. Zhang, Zhi & Sun, Baojiang & Wang, Zhiyuan & Mu, Xiaojie & Sun, Dalin, 2023. "Multiphase throttling characteristic analysis and structure optimization design of throttling valve in managed pressure drilling," Energy, Elsevier, vol. 262(PB).
    20. Dai, Rui & Tian, Ran & Zheng, Siyu & Wei, Mingshan & Shi, GuoHua, 2022. "Dynamic performance evaluation of LNG vaporization system integrated with solar-assisted heat pump," Renewable Energy, Elsevier, vol. 188(C), pages 561-572.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pd:s0360544221025767. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.