IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i7p1546-d1362579.html
   My bibliography  Save this article

Adjustment of Proportional Control Valve Characteristics via Pressure Compensation Using Flow Forces

Author

Listed:
  • Edward Lisowski

    (Faculty of Mechanical Engineering, Cracow University of Technology, 31-864 Cracow, Poland)

  • Grzegorz Filo

    (Faculty of Mechanical Engineering, Cracow University of Technology, 31-864 Cracow, Poland)

  • Janusz Rajda

    (PONAR Wadowice, Wojska Polskiego 29, 34-100 Wadowice, Poland)

Abstract

This article concerns flow analysis through a multi-section proportional control valve. In valves of this type, the flow rate is adjusted through an electromagnet current. However, for a fixed control signal value, the flow rate changes as the pressure in the system increases, which is an unfavorable phenomenon. Compensation for pressure influence is usually achieved using additional valves. In this work, the valve characteristics were modified to achieve a possibly steady flow rate by compensating for the pressure using flow forces without the necessity of correction valves. For this purpose, the geometry of the spool throttling slots was designed by making precise cuts. Moreover, the parameters of the return springs were adjusted accordingly. The changes were introduced in such a way as to adjust the direction of the fluid stream and thus influence the balance of forces acting on the spool. Simulation tests were performed using the CFD method. In turn, laboratory experiments were carried out using the PONAR WREM10 valve with a prototype spool in two neutral position flow configurations: closed (E) and open (W). The results confirmed the valve’s ability to maintain a quasi-constant flow rate in a wide pressure range. The maximum obtained non-uniformity in the flow rate for the fixed control signal in the whole studied pressure range, p = 5–30 MPa , was 6.3 % except for the lowest current intensity, I = 0.6 A , when it raised to 13.6 %. Moreover, high consistency between simulation results and laboratory experiments was achieved. The difference in the obtained flow rate did not exceed 8–10% in the case of low current intensity values I = 0.6 –0.75 A , and it fell below 5% at higher ones.

Suggested Citation

  • Edward Lisowski & Grzegorz Filo & Janusz Rajda, 2024. "Adjustment of Proportional Control Valve Characteristics via Pressure Compensation Using Flow Forces," Energies, MDPI, vol. 17(7), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1546-:d:1362579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/7/1546/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/7/1546/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianjun Ye & Zhenhua Zhao & Jinyang Zheng & Shehab Salem & Jiangcun Yu & Junxu Cui & Xiaoyi Jiao, 2020. "Transient Flow Characteristic of High-Pressure Hydrogen Gas in Check Valve during the Opening Process," Energies, MDPI, vol. 13(16), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edward Lisowski & Grzegorz Filo & Janusz Rajda, 2022. "Analysis of Energy Loss on a Tunable Check Valve through the Numerical Simulation," Energies, MDPI, vol. 15(15), pages 1-17, August.
    2. Grzegorz Filo & Edward Lisowski & Janusz Rajda, 2021. "Design and Flow Analysis of an Adjustable Check Valve by Means of CFD Method," Energies, MDPI, vol. 14(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:7:p:1546-:d:1362579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.