IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2126-d533860.html
   My bibliography  Save this article

The Systemic Approach for Estimating and Strategizing Energy Security: The Case of Ukraine

Author

Listed:
  • Yurii Kharazishvili

    (Department of Regulatory Policy and Entrepreneurship Development, Institute of Industrial Economics of the National Academy of Sciences of Ukraine, 2 Maria Kapnist St., 03057 Kyiv, Ukraine
    National Institute for Strategic Studies, 7-A Pyrohova St., 01054 Kyiv, Ukraine)

  • Aleksy Kwilinski

    (The London Academy of Science and Business, 120 Baker St., London W1U 6TU, UK
    Department of Marketing, Sumy State University, 2 Rymskogo St., 40007 Sumy, Ukraine)

  • Oleksandr Sukhodolia

    (National Institute for Strategic Studies, 7-A Pyrohova St., 01054 Kyiv, Ukraine)

  • Henryk Dzwigol

    (Department of Marketing, Sumy State University, 2 Rymskogo St., 40007 Sumy, Ukraine
    Department of Management and Logistics, Faculty of Organization and Management, Silesian University of Technology, 26-28 Roosevelt St., 41-800 Zabrze, Poland)

  • Dmytro Bobro

    (National Institute for Strategic Studies, 7-A Pyrohova St., 01054 Kyiv, Ukraine)

  • Janusz Kotowicz

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, 18 Konarskiego St., 44-100 Gliwice, Poland)

Abstract

The current approaches to estimating the level of energy security are based on applying a comprehensive approach to selecting the factors that affect energy security and the dynamics of processes in this domain. This article reveals the application of the model of energy security estimation and strategizing based on the systemic description of energy security as an object of management: the integral system, elements and connections, functions, processes, and the system’s material. At the same time, this model is able to take into account the dynamics of technological, political, economic, and other factors operating in the country and on the global arena. The energy security estimation model developed uses a modern methodology of integrated estimation: a multiplicative form of the integrated index, a formalized definition of the safe existence limits in order to provide scientific substantiation of the threshold vector, a modified rationing method, the principal components method, and the sliding matrix method to substantiate dynamic weighting coefficients. The paper demonstrates the systemic approach application to shaping strategic goals in the energy security domain in the context of sustainable development; the trajectory of energy security development is calculated by the method of strategizing that applies the principle “future is determined by the trajectory to the future” instead of the classical forecasting “past determines the future”. In general, the article shows the possibility of unifying the process of formalizing energy security (according to the needs of the researcher: country, industry, energy network, supply chain) as an object of management, estimating energy security status, and strategizing the regulatory sphere transformation in accordance with the target values for monitoring the effectiveness of management.

Suggested Citation

  • Yurii Kharazishvili & Aleksy Kwilinski & Oleksandr Sukhodolia & Henryk Dzwigol & Dmytro Bobro & Janusz Kotowicz, 2021. "The Systemic Approach for Estimating and Strategizing Energy Security: The Case of Ukraine," Energies, MDPI, vol. 14(8), pages 1-30, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2126-:d:533860
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2126/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2126/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K. & Mukherjee, Ishani, 2011. "Conceptualizing and measuring energy security: A synthesized approach," Energy, Elsevier, vol. 36(8), pages 5343-5355.
    2. Aleksandra Kuzior & Aleksy Kwilinski & Volodymyr Tkachenko & Volodymyr Tkachenko, 2019. "Sustainable development of organizations based on the combinatorial model of artificial intelligence," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 7(2), pages 1353-1376, December.
    3. Kerstin Cuhls, 2003. "From forecasting to foresight processes-new participative foresight activities in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(2-3), pages 93-111.
    4. Huang, Beijia & Zhang, Long & Ma, Linmao & Bai, Wuliyasu & Ren, Jingzheng, 2021. "Multi-criteria decision analysis of China’s energy security from 2008 to 2017 based on Fuzzy BWM-DEA-AR model and Malmquist Productivity Index," Energy, Elsevier, vol. 228(C).
    5. Gong, Xu & Wang, You & Lin, Boqiang, 2021. "Assessing dynamic China’s energy security: Based on functional data analysis," Energy, Elsevier, vol. 217(C).
    6. Winzer, Christian, 2012. "Conceptualizing energy security," Energy Policy, Elsevier, vol. 46(C), pages 36-48.
    7. Yurii Kharazishvili & Aleksy Kwilinski & Olena Grishnova & Henryk Dzwigol, 2020. "Social Safety of Society for Developing Countries to Meet Sustainable Development Standards: Indicators, Level, Strategic Benchmarks (with Calculations Based on the Case Study of Ukraine)," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    8. Han Phoumin & Fukunari Kimura & Jun Arima, 2021. "ASEAN’s Energy Transition towards Cleaner Energy System: Energy Modelling Scenarios and Policy Implications," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    9. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    10. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    11. Darius Migilinskas & Leonas Ustinovichius, 2007. "Normalisation in the selection of construction alternatives," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 8(5/6), pages 623-639.
    12. Emily C. Hazell, 2020. "Disaggregating Ecosystem Benefits: An Integrated Environmental-Deprivation Index," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    13. Abdullah, Fahad Bin & Iqbal, Rizwan & Hyder, Syed Irfan & Jawaid, Mohammad, 2020. "Energy security indicators for Pakistan: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Joanna Mazurkiewicz & Piotr Lis, 2018. "Diversification of energy poverty in Central and Eastern European countries," Virtual Economics, The London Academy of Science and Business, vol. 1(1), pages 26-41, October.
    15. Nataliya Dalevska & Nataliya Dalevska & Valentyna Khobta & Valentyna Khobta & Aleksy Kwilinski & Aleksy Kwilinski & Sergey Kravchenko & Sergey Kravchenko, 2019. "A model for estimating social and economic indicators of sustainable development," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 6(4), pages 1839-1860, June.
    16. Oleksii Lyulyov & Tetyana Pimonenko & Natalia Stoyanets & Nataliia Letunovska, 2019. "Sustainable Development of Agricultural Sector: Democratic Profile Impact Among Developing Countries," Research in World Economy, Research in World Economy, Sciedu Press, vol. 10(4), pages 97-105, December.
    17. Serhiy Lyeonov & Tetyana Pimonenko & Yuriy Bilan & Dalia Štreimikienė & Grzegorz Mentel, 2019. "Assessment of Green Investments’ Impact on Sustainable Development: Linking Gross Domestic Product Per Capita, Greenhouse Gas Emissions and Renewable Energy," Energies, MDPI, vol. 12(20), pages 1-12, October.
    18. Oleksii Lyulyov & Tetyana Pimonenko & Aleksy Kwilinski & Henryk Dzwigol & Mariola Dzwigol-Barosz & Vladyslav Pavlyk & Piotr Barosz, 2021. "The Impact of the Government Policy on the Energy Efficient Gap: The Evidence from Ukraine," Energies, MDPI, vol. 14(2), pages 1-13, January.
    19. Tatiana Petrova & Andrey Grunin & Arthur Shakhbazyan, 2020. "Integral Index of Traffic Planning: Case-Study of Moscow City’s Transportation System," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    20. Chester, Lynne, 2010. "Conceptualising energy security and making explicit its polysemic nature," Energy Policy, Elsevier, vol. 38(2), pages 887-895, February.
    21. Aleksandra Kuzior & Alla Lobanova, 2020. "Tools of Information and Communication Technologies in Ecological Marketing under Conditions of Sustainable Development in Industrial Regions (Through Examples of Poland and Ukraine)," JRFM, MDPI, vol. 13(10), pages 1-20, October.
    22. Iyke, Bernard Njindan & Tran, Vuong Thao & Narayan, Paresh Kumar, 2021. "Can energy security predict energy stock returns?," Energy Economics, Elsevier, vol. 94(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radoslaw Miskiewicz, 2022. "Clean and Affordable Energy within Sustainable Development Goals: The Role of Governance Digitalization," Energies, MDPI, vol. 15(24), pages 1-17, December.
    2. Radosław Miśkiewicz & Krzysztof Matan & Jakub Karnowski, 2022. "The Role of Crypto Trading in the Economy, Renewable Energy Consumption and Ecological Degradation," Energies, MDPI, vol. 15(10), pages 1-15, May.
    3. Aleksandra Kuzior & Aleksy Kwilinski & Ihor Hroznyi, 2021. "The Factorial-Reflexive Approach to Diagnosing the Executors’ and Contractors’ Attitude to Achieving the Objectives by Energy Supplying Companies," Energies, MDPI, vol. 14(9), pages 1-16, April.
    4. Zhaozhi Wang & Shoufu Lin & Yang Chen & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Digitalization Effect on Business Performance: Role of Business Model Innovation," Sustainability, MDPI, vol. 15(11), pages 1-19, June.
    5. Abdul Rehman & Magdalena Radulescu & Laura Mariana Cismaș & Cristian-Mihai Cismaș & Abbas Ali Chandio & Smaranda (Toma) Simoni, 2022. "Renewable Energy, Urbanization, Fossil Fuel Consumption, and Economic Growth Dilemma in Romania: Examining the Short- and Long-Term Impact," Energies, MDPI, vol. 15(19), pages 1-18, September.
    6. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Greenfield Investment as a Catalyst of Green Economic Growth," Energies, MDPI, vol. 16(5), pages 1-16, March.
    7. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Inclusive Economic Growth: Relationship between Energy and Governance Efficiency," Energies, MDPI, vol. 16(6), pages 1-16, March.
    8. Qian Wang & Yang Chen & Heshan Guan & Oleksii Lyulyov & Tetyana Pimonenko, 2022. "Technological Innovation Efficiency in China: Dynamic Evaluation and Driving Factors," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    9. Yana Us & Tetyana Pimonenko & Oleksii Lyulyov, 2023. "Corporate Social Responsibility and Renewable Energy Development for the Green Brand within SDGs: A Meta-Analytic Review," Energies, MDPI, vol. 16(5), pages 1-18, February.
    10. Teresa Pakulska, 2023. "The Energy Crisis—Looking at the Renewable Transition," Energies, MDPI, vol. 16(15), pages 1-3, July.
    11. Henryk Dzwigol & Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "The Role of Environmental Regulations, Renewable Energy, and Energy Efficiency in Finding the Path to Green Economic Growth," Energies, MDPI, vol. 16(7), pages 1-18, March.
    12. Yang Chen & Aleksy Kwilinski & Olena Chygryn & Oleksii Lyulyov & Tetyana Pimonenko, 2021. "The Green Competitiveness of Enterprises: Justifying the Quality Criteria of Digital Marketing Communication Channels," Sustainability, MDPI, vol. 13(24), pages 1-13, December.
    13. Adelina Hrițuc & Laurențiu Slătineanu & Oana Dodun & Gheorghe Nagîț & Margareta Coteață & Marius Andrei Boca & Vasile Ermolai, 2021. "Sustainable Manufacture of Bearing Bushing Parts," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    14. Henryk Dzwigol & Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Renewable Energy, Knowledge Spillover and Innovation: Capacity of Environmental Regulation," Energies, MDPI, vol. 16(3), pages 1-15, January.
    15. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "The Effects of Urbanisation on Green Growth within Sustainable Development Goals," Land, MDPI, vol. 12(2), pages 1-16, February.
    16. Aleksandra Kuzior & Marek Staszek, 2021. "Energy Management in the Railway Industry: A Case Study of Rail Freight Carrier in Poland," Energies, MDPI, vol. 14(21), pages 1-21, October.
    17. Abdulrasheed Zakari & Jurij Toplak & Luka Martin Tomažič, 2022. "Exploring the Relationship between Energy and Food Security in Africa with Instrumental Variables Analysis," Energies, MDPI, vol. 15(15), pages 1-14, July.
    18. Daniel Mara & Silviu Nate & Andriy Stavytskyy & Ganna Kharlamova, 2022. "The Place of Energy Security in the National Security Framework: An Assessment Approach," Energies, MDPI, vol. 15(2), pages 1-29, January.
    19. Siksnelyte-Butkiene, Indre & Streimikiene, Dalia & Lekavicius, Vidas & Balezentis, Tomas, 2024. "Comprehensive analysis of energy security indicators and measurement of their integrity," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    20. Oleksii Lyulyov & Ihor Vakulenko & Tetyana Pimonenko & Aleksy Kwilinski & Henryk Dzwigol & Mariola Dzwigol-Barosz, 2021. "Comprehensive Assessment of Smart Grids: Is There a Universal Approach?," Energies, MDPI, vol. 14(12), pages 1-26, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutak, Magdalena & Brodny, Jarosław, 2022. "Analysis of the level of energy security in the three seas initiative countries," Applied Energy, Elsevier, vol. 311(C).
    2. Aleksandra Kuzior & Aleksy Kwilinski & Ihor Hroznyi, 2021. "The Factorial-Reflexive Approach to Diagnosing the Executors’ and Contractors’ Attitude to Achieving the Objectives by Energy Supplying Companies," Energies, MDPI, vol. 14(9), pages 1-16, April.
    3. Zhu, Bo & Deng, Yuanyue & Lin, Renda & Hu, Xin & Chen, Pingshe, 2022. "Energy security: Does systemic risk spillover matter? Evidence from China," Energy Economics, Elsevier, vol. 114(C).
    4. Evgeny Lisin & Wadim Strielkowski & Veronika Chernova & Alena Fomina, 2018. "Assessment of the Territorial Energy Security in the Context of Energy Systems Integration," Energies, MDPI, vol. 11(12), pages 1-14, November.
    5. Radosław Miśkiewicz, 2020. "Efficiency of Electricity Production Technology from Post-Process Gas Heat: Ecological, Economic and Social Benefits," Energies, MDPI, vol. 13(22), pages 1-15, November.
    6. Wei, Na & Xie, Wen-Jie & Zhou, Wei-Xing, 2022. "Robustness of the international oil trade network under targeted attacks to economies," Energy, Elsevier, vol. 251(C).
    7. Siksnelyte-Butkiene, Indre & Streimikiene, Dalia & Lekavicius, Vidas & Balezentis, Tomas, 2024. "Comprehensive analysis of energy security indicators and measurement of their integrity," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    8. Larsen, Erik R. & Osorio, Sebastian & van Ackere, Ann, 2017. "A framework to evaluate security of supply in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 646-655.
    9. John A. Paravantis, 2019. "Dimensions, Components and Metrics of Energy Security: Review and Synthesis," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 69(4), pages 38-52, October-D.
    10. Kumar, Sourabh, 2023. "Evaluation and analysis of India's energy security: A policy perspective," Energy, Elsevier, vol. 278(PB).
    11. Jacek Strojny & Anna Krakowiak-Bal & Jarosław Knaga & Piotr Kacorzyk, 2023. "Energy Security: A Conceptual Overview," Energies, MDPI, vol. 16(13), pages 1-35, June.
    12. Wang, Kai-Hua & Zhao, Yan-Xin & Su, Yun Hsuan & Lobonţ, Oana-Ramona, 2023. "Energy security and CO2 emissions: New evidence from time-varying and quantile-varying aspects," Energy, Elsevier, vol. 273(C).
    13. Amin, Sakib Bin & Chang, Youngho & Khan, Farhan & Taghizadeh-Hesary, Farhad, 2022. "Energy security and sustainable energy policy in Bangladesh: From the lens of 4As framework," Energy Policy, Elsevier, vol. 161(C).
    14. Honorata Nyga-Łukaszewska & Kentaka Aruga & Katarzyna Stala-Szlugaj, 2020. "Energy Security of Poland and Coal Supply: Price Analysis," Sustainability, MDPI, vol. 12(6), pages 1-18, March.
    15. Aurelia Rybak & Aleksandra Rybak & Jarosław Joostberens, 2023. "The Impact of Removing Coal from Poland’s Energy Mix on Selected Aspects of the Country’s Energy Security," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    16. Andriy Stavytskyy & Ganna Kharlamova & Olena Komendant & Jarosław Andrzejczak & Joanna Nakonieczny, 2021. "Methodology for Calculating the Energy Security Index of the State: Taking into Account Modern Megatrends," Energies, MDPI, vol. 14(12), pages 1-19, June.
    17. Thauan Santos & Amaro Olímpio Pereira Júnior & Emilio Lèbre La Rovere, 2017. "Evaluating Energy Policies through the Use of a Hybrid Quantitative Indicator-Based Approach: The Case of Mercosur," Energies, MDPI, vol. 10(12), pages 1-15, December.
    18. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    19. Cherp, Aleh & Jewell, Jessica, 2014. "The concept of energy security: Beyond the four As," Energy Policy, Elsevier, vol. 75(C), pages 415-421.
    20. Liu, Litao & Cao, Zhi & Liu, Xiaojie & Shi, Lei & Cheng, Shengkui & Liu, Gang, 2020. "Oil security revisited: An assessment based on complex network analysis," Energy, Elsevier, vol. 194(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2126-:d:533860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.