IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2121-d533603.html
   My bibliography  Save this article

Criteria for Optimal Site Selection for Ocean Thermal Energy Conversion (OTEC) Plants in Mexico

Author

Listed:
  • Erika Paola Garduño-Ruiz

    (Instituto de Ingeniería, Ciudad Universitaria, Circuito Exterior s/n, Coyoacán, 04510 Mexico City, Mexico)

  • Rodolfo Silva

    (Instituto de Ingeniería, Ciudad Universitaria, Circuito Exterior s/n, Coyoacán, 04510 Mexico City, Mexico)

  • Yandy Rodríguez-Cueto

    (Instituto de Ingeniería, Ciudad Universitaria, Circuito Exterior s/n, Coyoacán, 04510 Mexico City, Mexico)

  • Alejandro García-Huante

    (Instituto de Ingeniería, Ciudad Universitaria, Circuito Exterior s/n, Coyoacán, 04510 Mexico City, Mexico)

  • Jorge Olmedo-González

    (ESIQIE, Laboratorio Electroquímica, Instituto Politécnico Nacional, Avenida Instituto Politécnico Nacional s/n, Nueva Industrial Vallejo, 07738 Mexico City, Mexico)

  • M. Luisa Martínez

    (Functional Ecology Network, Instituto de Ecología, A.C. Xalapa, 91073 Veracruz, Mexico)

  • Astrid Wojtarowski

    (El Colegio de Veracruz, Xalapa, 91000 Veracruz, Mexico)

  • Raúl Martell-Dubois

    (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Tlalpan, 14010 Mexico City, Mexico)

  • Sergio Cerdeira-Estrada

    (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Tlalpan, 14010 Mexico City, Mexico)

Abstract

Sustainable energy is needed globally, and Ocean Thermal Energy Conversion (OTEC) is a possible way to diversify the energy matrix. This article suggests a preliminary selection process to find optimal sites for OTEC deployment on the Mexican coastline. The method comprises the (1) evaluation of the thermal power potential, using daily data (16 years) of sea surface temperature, and the percentage of available time of the power thresholds; (2) assessment of feasibility using a decision matrix, fed by technical, environmental and socioeconomic criteria; (3) identification of four potential sites; and (4) comparison of OTEC competitiveness with other technologies through the levelized cost of energy. Multi-criteria decision analysis was applied to select optimal sites, using the technique for ordering performance by the similarity to the ideal solution. The best sites were (1) Puerto Angel and (2) Cabo San Lucas; with power production of > 50 MW and a persistence of > 40%. As yet there is no evidence from operational OTEC plants that could alter the environmental and socioeconomic criteria weightings. More in situ studies on pilot plants should help to determine their possible environmental impact and socio-economic consequences before any larger-scale projects are implemented.

Suggested Citation

  • Erika Paola Garduño-Ruiz & Rodolfo Silva & Yandy Rodríguez-Cueto & Alejandro García-Huante & Jorge Olmedo-González & M. Luisa Martínez & Astrid Wojtarowski & Raúl Martell-Dubois & Sergio Cerdeira-Estr, 2021. "Criteria for Optimal Site Selection for Ocean Thermal Energy Conversion (OTEC) Plants in Mexico," Energies, MDPI, vol. 14(8), pages 1-23, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2121-:d:533603
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bernardoni, C. & Binotti, M. & Giostri, A., 2019. "Techno-economic analysis of closed OTEC cycles for power generation," Renewable Energy, Elsevier, vol. 132(C), pages 1018-1033.
    2. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    3. Juan Francisco Barcenas Graniel & Enrique Celestino Carrera Chan & Maria Fernanda Sabido Tun & Estela Cerezo-Acevedo, 2020. "Environmental Impact Assessment of the Operation of an Open Cycle OTEC 1MWe Power Plant in the Cozumel Island, Mexico," Chapters, in: Albert S. Kim & Hyeon-Ju Kim (ed.), Ocean Thermal Energy Conversion (OTEC) - Past, Present, and Progress, IntechOpen.
    4. Mendoza, Edgar & Lithgow, Debora & Flores, Pamela & Felix, Angélica & Simas, Teresa & Silva, Rodolfo, 2019. "A framework to evaluate the environmental impact of OCEAN energy devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 440-449.
    5. Osorio, Andrés F. & Arias-Gaviria, Jessica & Devis-Morales, Andrea & Acevedo, Diego & Velasquez, Héctor Iván & Arango-Aramburo, Santiago, 2016. "Beyond electricity: The potential of ocean thermal energy and ocean technology ecoparks in small tropical islands," Energy Policy, Elsevier, vol. 98(C), pages 713-724.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Langer, Jannis & Infante Ferreira, Carlos & Quist, Jaco, 2022. "Is bigger always better? Designing economically feasible ocean thermal energy conversion systems using spatiotemporal resource data," Applied Energy, Elsevier, vol. 309(C).
    2. Albert S. Kim, 2022. "Special Issue “Selected Papers from the 8th International OTEC Symposium”," Energies, MDPI, vol. 15(3), pages 1-2, January.
    3. Enas Taha Sayed & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Ayman Mdallal & Ahmed Rezk & Mohammad Ali Abdelkareem, 2023. "Renewable Energy and Energy Storage Systems," Energies, MDPI, vol. 16(3), pages 1-26, February.
    4. Hall, Kashawn & Kelly, Solange & Henry, Legena, 2022. "Site selection of Ocean Thermal Energy Conversion (OTEC) plants for Barbados," Renewable Energy, Elsevier, vol. 201(P2), pages 60-69.
    5. Guillermo Lopez & Maria de los Angeles Ortega Del Rosario & Arthur James & Humberto Alvarez, 2022. "Site Selection for Ocean Thermal Energy Conversion Plants (OTEC): A Case Study in Panama," Energies, MDPI, vol. 15(9), pages 1-24, April.
    6. Jessica Guadalupe Tobal-Cupul & Erika Paola Garduño-Ruiz & Emiliano Gorr-Pozzi & Jorge Olmedo-González & Emily Diane Martínez & Andrés Rosales & Dulce Daniela Navarro-Moreno & Jonathan Emmanuel Beníte, 2022. "An Assessment of the Financial Feasibility of an OTEC Ecopark: A Case Study at Cozumel Island," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    7. Eglė Tumelienė & Jūratė Sužiedelytė Visockienė & Vida Maliene, 2022. "Evaluating the Eligibility of Abandoned Agricultural Land for the Development of Wind Energy in Lithuania," Sustainability, MDPI, vol. 14(21), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jessica Guadalupe Tobal-Cupul & Erika Paola Garduño-Ruiz & Emiliano Gorr-Pozzi & Jorge Olmedo-González & Emily Diane Martínez & Andrés Rosales & Dulce Daniela Navarro-Moreno & Jonathan Emmanuel Beníte, 2022. "An Assessment of the Financial Feasibility of an OTEC Ecopark: A Case Study at Cozumel Island," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    2. Langer, Jannis & Quist, Jaco & Blok, Kornelis, 2022. "Upscaling scenarios for ocean thermal energy conversion with technological learning in Indonesia and their global relevance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Langer, Jannis & Quist, Jaco & Blok, Kornelis, 2020. "Recent progress in the economics of ocean thermal energy conversion: Critical review and research agenda," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    4. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    5. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    6. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    7. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    8. Nermin Kişi, 2019. "A Strategic Approach to Sustainable Tourism Development Using the A’WOT Hybrid Method: A Case Study of Zonguldak, Turkey," Sustainability, MDPI, vol. 11(4), pages 1-19, February.
    9. Ayodele, T.R. & Ogunjuyigbe, A.S.O. & Odigie, O. & Munda, J.L., 2018. "A multi-criteria GIS based model for wind farm site selection using interval type-2 fuzzy analytic hierarchy process: The case study of Nigeria," Applied Energy, Elsevier, vol. 228(C), pages 1853-1869.
    10. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    11. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    12. Abareshi, Maryam & Zaferanieh, Mehdi, 2019. "A bi-level capacitated P-median facility location problem with the most likely allocation solution," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 1-20.
    13. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    14. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    15. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    16. Kokaraki, Nikoleta & Hopfe, Christina J. & Robinson, Elaine & Nikolaidou, Elli, 2019. "Testing the reliability of deterministic multi-criteria decision-making methods using building performance simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 991-1007.
    17. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    18. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    19. Kadir Kaan GÖNCÜ & Onur ÇETIN, 2022. "Evaluation Of Location Selection Criteria For Coordination Management Centers And Logistic Support Units In Disaster Areas With Ahp Method," Prizren Social Science Journal, SHIKS, vol. 6(2), pages 15-23, August.
    20. Tommaso Ortalli & Andrea Di Martino & Michela Longo & Dario Zaninelli, 2024. "Make-or-Buy Policy Decision in Maintenance Planning for Mobility: A Multi-Criteria Approach," Logistics, MDPI, vol. 8(2), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2121-:d:533603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.