IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2120-d533598.html
   My bibliography  Save this article

Data-Driven Online Energy Scheduling of a Microgrid Based on Deep Reinforcement Learning

Author

Listed:
  • Ying Ji

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Jianhui Wang

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Jiacan Xu

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

  • Donglin Li

    (College of Information Science and Engineering, Northeastern University, Shenyang 110819, China)

Abstract

The proliferation of distributed renewable energy resources (RESs) poses major challenges to the operation of microgrids due to uncertainty. Traditional online scheduling approaches relying on accurate forecasts become difficult to implement due to the increase of uncertain RESs. Although several data-driven methods have been proposed recently to overcome the challenge, they generally suffer from a scalability issue due to the limited ability to optimize high-dimensional continuous control variables. To address these issues, we propose a data-driven online scheduling method for microgrid energy optimization based on continuous-control deep reinforcement learning (DRL). We formulate the online scheduling problem as a Markov decision process (MDP). The objective is to minimize the operating cost of the microgrid considering the uncertainty of RESs generation, load demand, and electricity prices. To learn the optimal scheduling strategy, a Gated Recurrent Unit (GRU)-based network is designed to extract temporal features of uncertainty and generate the optimal scheduling decisions in an end-to-end manner. To optimize the policy with high-dimensional and continuous actions, proximal policy optimization (PPO) is employed to train the neural network-based policy in a data-driven fashion. The proposed method does not require any forecasting information on the uncertainty or a prior knowledge of the physical model of the microgrid. Simulation results using realistic power system data of California Independent System Operator (CAISO) demonstrate the effectiveness of the proposed method.

Suggested Citation

  • Ying Ji & Jianhui Wang & Jiacan Xu & Donglin Li, 2021. "Data-Driven Online Energy Scheduling of a Microgrid Based on Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2120-:d:533598
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anvari-Moghaddam, Amjad & Rahimi-Kian, Ashkan & Mirian, Maryam S. & Guerrero, Josep M., 2017. "A multi-agent based energy management solution for integrated buildings and microgrid system," Applied Energy, Elsevier, vol. 203(C), pages 41-56.
    2. Brida V. Mbuwir & Frederik Ruelens & Fred Spiessens & Geert Deconinck, 2017. "Battery Energy Management in a Microgrid Using Batch Reinforcement Learning," Energies, MDPI, vol. 10(11), pages 1-19, November.
    3. Ying Ji & Jianhui Wang & Jiacan Xu & Xiaoke Fang & Huaguang Zhang, 2019. "Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning," Energies, MDPI, vol. 12(12), pages 1-21, June.
    4. Luqin Fan & Jing Zhang & Yu He & Ying Liu & Tao Hu & Heng Zhang, 2021. "Optimal Scheduling of Microgrid Based on Deep Deterministic Policy Gradient and Transfer Learning," Energies, MDPI, vol. 14(3), pages 1-15, January.
    5. Zhongwen Li & Chuanzhi Zang & Peng Zeng & Haibin Yu, 2016. "Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty," Energies, MDPI, vol. 9(7), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gwanggil Jeon, 2022. "Artificial Intelligence Approaches for Energies," Energies, MDPI, vol. 15(18), pages 1-3, September.
    2. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    3. Zeli Ye & Wentao Huang & Jinfeng Huang & Jun He & Chengxi Li & Yan Feng, 2023. "Optimal Scheduling of Integrated Community Energy Systems Based on Twin Data Considering Equipment Efficiency Correction Models," Energies, MDPI, vol. 16(3), pages 1-22, January.
    4. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Ting & Zhao, Liyuan & Li, Wei & Zomaya, Albert Y., 2021. "Dynamic energy dispatch strategy for integrated energy system based on improved deep reinforcement learning," Energy, Elsevier, vol. 235(C).
    2. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    3. Alexander N. Kozlov & Nikita V. Tomin & Denis N. Sidorov & Electo E. S. Lora & Victor G. Kurbatsky, 2020. "Optimal Operation Control of PV-Biomass Gasifier-Diesel-Hybrid Systems Using Reinforcement Learning Techniques," Energies, MDPI, vol. 13(10), pages 1-20, May.
    4. Bio Gassi, Karim & Baysal, Mustafa, 2023. "Improving real-time energy decision-making model with an actor-critic agent in modern microgrids with energy storage devices," Energy, Elsevier, vol. 263(PE).
    5. Yang, Jiaojiao & Sun, Zeyi & Hu, Wenqing & Steinmeister, Louis, 2022. "Joint control of manufacturing and onsite microgrid system via novel neural-network integrated reinforcement learning algorithms," Applied Energy, Elsevier, vol. 315(C).
    6. Dimitrios Vamvakas & Panagiotis Michailidis & Christos Korkas & Elias Kosmatopoulos, 2023. "Review and Evaluation of Reinforcement Learning Frameworks on Smart Grid Applications," Energies, MDPI, vol. 16(14), pages 1-38, July.
    7. Ana Cabrera-Tobar & Alessandro Massi Pavan & Giovanni Petrone & Giovanni Spagnuolo, 2022. "A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids," Energies, MDPI, vol. 15(23), pages 1-38, December.
    8. Grace Muriithi & Sunetra Chowdhury, 2021. "Optimal Energy Management of a Grid-Tied Solar PV-Battery Microgrid: A Reinforcement Learning Approach," Energies, MDPI, vol. 14(9), pages 1-24, May.
    9. Khawaja Haider Ali & Mohammad Abusara & Asif Ali Tahir & Saptarshi Das, 2023. "Dual-Layer Q-Learning Strategy for Energy Management of Battery Storage in Grid-Connected Microgrids," Energies, MDPI, vol. 16(3), pages 1-17, January.
    10. Álex Omar Topa Gavilema & José Domingo Álvarez & José Luis Torres Moreno & Manuel Pérez García, 2021. "Towards Optimal Management in Microgrids: An Overview," Energies, MDPI, vol. 14(16), pages 1-25, August.
    11. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    12. Ying Ji & Jianhui Wang & Jiacan Xu & Xiaoke Fang & Huaguang Zhang, 2019. "Real-Time Energy Management of a Microgrid Using Deep Reinforcement Learning," Energies, MDPI, vol. 12(12), pages 1-21, June.
    13. Zhou, Yanting & Ma, Zhongjing & Zhang, Jinhui & Zou, Suli, 2022. "Data-driven stochastic energy management of multi energy system using deep reinforcement learning," Energy, Elsevier, vol. 261(PA).
    14. David Domínguez-Barbero & Javier García-González & Miguel A. Sanz-Bobi & Eugenio F. Sánchez-Úbeda, 2020. "Optimising a Microgrid System by Deep Reinforcement Learning Techniques," Energies, MDPI, vol. 13(11), pages 1-18, June.
    15. Mudhafar Al-Saadi & Maher Al-Greer & Michael Short, 2021. "Strategies for Controlling Microgrid Networks with Energy Storage Systems: A Review," Energies, MDPI, vol. 14(21), pages 1-45, November.
    16. Ritu Kandari & Neeraj Neeraj & Alexander Micallef, 2022. "Review on Recent Strategies for Integrating Energy Storage Systems in Microgrids," Energies, MDPI, vol. 16(1), pages 1-24, December.
    17. Fausto Calderon-Obaldia & Jordi Badosa & Anne Migan-Dubois & Vincent Bourdin, 2020. "A Two-Step Energy Management Method Guided by Day-Ahead Quantile Solar Forecasts: Cross-Impacts on Four Services for Smart-Buildings," Energies, MDPI, vol. 13(22), pages 1-29, November.
    18. Khawaja Haider Ali & Marvin Sigalo & Saptarshi Das & Enrico Anderlini & Asif Ali Tahir & Mohammad Abusara, 2021. "Reinforcement Learning for Energy-Storage Systems in Grid-Connected Microgrids: An Investigation of Online vs. Offline Implementation," Energies, MDPI, vol. 14(18), pages 1-18, September.
    19. Bing Liu & Bowen Xu & Tong He & Wei Yu & Fanghong Guo, 2022. "Hybrid Deep Reinforcement Learning Considering Discrete-Continuous Action Spaces for Real-Time Energy Management in More Electric Aircraft," Energies, MDPI, vol. 15(17), pages 1-21, August.
    20. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2120-:d:533598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.