IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1883-d526137.html
   My bibliography  Save this article

Effect of LCA Data Sources on GBRS Reference Values: The Envelope of an Italian Passive House

Author

Listed:
  • Elisabetta Palumbo

    (Institute of Sustainability in Civil Engineering (INaB), RWTH Aachen University, Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany)

Abstract

Scientific literature provides evidence that mitigating the effects of a building’s operation does not in itself ensure an overall improvement in its environmental performance. A Life Cycle Assessment (LCA) plays a key role in gauging the overall environmental performance of a building although several authors argue that the lack of LCA threshold values makes it difficult to compare design options or measure whether reduced impact targets are achieved. This has led the Green Building Rating Systems (GBRS) to include the LCA within their evaluation criteria and, in like Active House (AH), establish threshold values of the main impact categories to quantify the level of performance achieved. Since the reliability of the data sources is a crucial issue for applying the LCA method, the effectiveness of their implementation within the GBRS also strictly depends on the origin of the impact values. To quantify the extent to which the source affects the impacts calculated by the LCA threshold value in AH, the present study compared the outcomes of two assessments carried out in parallel using two different data sources: AH–LCA evaluation tool v.1.6 and the Environmental Product Declaration (EPD). A Passive House (PH)-compliant, small residential building was selected as a case study, as this is a standard that excels in ultra-low-energy performance. Moreover, given the crucial role that the envelope plays in the PH standard, the analysis was undertaken on the envelope of a PH-compliant building located in Northern Italy. To stress the influence of embedded effects in a Passive House, the assessment focused on the production and end-of-life stages of building materials. The comparison showed a relevant difference between the two scenarios for all the environmental indicators: e.g., deviations of 10% for Global Warming Potential, 20% for Acidification Potential and Eutrophication Potential, and 40–50% for Renewable Primary Energy.

Suggested Citation

  • Elisabetta Palumbo, 2021. "Effect of LCA Data Sources on GBRS Reference Values: The Envelope of an Italian Passive House," Energies, MDPI, vol. 14(7), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1883-:d:526137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jia,Jimmy Y. & Crabtree,Jason, 2015. "Driven by Demand," Cambridge Books, Cambridge University Press, number 9781107507104, January.
    2. Elisabetta Palumbo & Bernardette Soust-Verdaguer & Carmen Llatas & Marzia Traverso, 2020. "How to Obtain Accurate Environmental Impacts at Early Design Stages in BIM When Using Environmental Product Declaration. A Method to Support Decision-Making," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    3. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    4. Helena Gervasio & Silvia Dimova & Artur Pinto, 2018. "Benchmarking the Life-Cycle Environmental Performance of Buildings," Sustainability, MDPI, vol. 10(5), pages 1-30, May.
    5. Anand, Chirjiv Kaur & Amor, Ben, 2017. "Recent developments, future challenges and new research directions in LCA of buildings: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 408-416.
    6. Jia,Jimmy Y. & Crabtree,Jason, 2015. "Driven by Demand," Cambridge Books, Cambridge University Press, number 9781107104662, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Jachura & Robert Sekret, 2021. "Life Cycle Assessment of the Use of Phase Change Material in an Evacuated Solar Tube Collector," Energies, MDPI, vol. 14(14), pages 1-18, July.
    2. Ming Hu & Nora Wang Esram, 2021. "The Status of Embodied Carbon in Building Practice and Research in the United States: A Systematic Investigation," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
    3. Pamela Del Rosario & Elisabetta Palumbo & Marzia Traverso, 2021. "Environmental Product Declarations as Data Source for the Environmental Assessment of Buildings in the Context of Level(s) and DGNB: How Feasible Is Their Adoption?," Sustainability, MDPI, vol. 13(11), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    2. Kong, Minjin & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon, 2021. "Development of a framework for evaluating the contents and usability of the building life cycle assessment tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    4. Pau Fonseca i Casas & Antoni Fonseca i Casas, 2017. "Using Specification and Description Language for Life Cycle Assesment in Buildings," Sustainability, MDPI, vol. 9(6), pages 1-17, June.
    5. Alejandro Padilla-Rivera & Ben Amor & Pierre Blanchet, 2018. "Evaluating the Link between Low Carbon Reductions Strategies and Its Performance in the Context of Climate Change: A Carbon Footprint of a Wood-Frame Residential Building in Quebec, Canada," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    6. Kim, Rakhyun & Tae, Sungho & Roh, Seungjun, 2017. "Development of low carbon durability design for green apartment buildings in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 263-272.
    7. Diana Carolina Gámez-García & José Manuel Gómez-Soberón & Ramón Corral-Higuera & Héctor Saldaña-Márquez & María Consolación Gómez-Soberón & Susana Paola Arredondo-Rea, 2018. "A Cradle to Handover Life Cycle Assessment of External Walls: Choice of Materials and Prognosis of Elements," Sustainability, MDPI, vol. 10(8), pages 1-24, August.
    8. Mohajeri, Nahid & Perera, A.T.D. & Coccolo, Silvia & Mosca, Lucas & Le Guen, Morgane & Scartezzini, Jean-Louis, 2019. "Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050," Renewable Energy, Elsevier, vol. 143(C), pages 810-826.
    9. Taesub Lim & Jaewang Seok & Daeung Danny Kim, 2017. "A Comparative Study of Energy Performance of Fumed Silica Vacuum Insulation Panels in an Apartment Building," Energies, MDPI, vol. 10(12), pages 1-12, December.
    10. Luka Adanič & Sara Guerra de Oliveira & Andrej Tibaut, 2021. "BIM and Mechanical Engineering—A Cross-Disciplinary Analysis," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    11. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina, 2017. "Modeling the energy and environmental life cycle of buildings: A co-simulation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 733-742.
    12. Henrik Engelbrecht Foldager & Rasmus Camillus Jeppesen & Muhyiddine Jradi, 2019. "DanRETRO: A Decision-Making Tool for Energy Retrofit Design and Assessment of Danish Buildings," Sustainability, MDPI, vol. 11(14), pages 1-19, July.
    13. Yousif Jaleel & Mohd Saidin Misnan & Mohamad Zahierruden Ismail, 2024. "Environment Product Declaration (EPD) in Construction Industries: Significance and Barriers," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 8(6), pages 1355-1365, June.
    14. Aurora Greta Ruggeri & Laura Gabrielli & Massimiliano Scarpa, 2020. "Energy Retrofit in European Building Portfolios: A Review of Five Key Aspects," Sustainability, MDPI, vol. 12(18), pages 1-38, September.
    15. Xingqiang Song & Christel Carlsson & Ramona Kiilsgaard & David Bendz & Helene Kennedy, 2020. "Life Cycle Assessment of Geotechnical Works in Building Construction: A Review and Recommendations," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    16. Francesco Asdrubali & Gianluca Grazieschi & Marta Roncone & Francesca Thiebat & Corrado Carbonaro, 2023. "Sustainability of Building Materials: Embodied Energy and Embodied Carbon of Masonry," Energies, MDPI, vol. 16(4), pages 1-28, February.
    17. Helena Nydahl & Staffan Andersson & Anders P. Åstrand & Thomas Olofsson, 2019. "Environmental Performance Measures to Assess Building Refurbishment from a Life Cycle Perspective," Energies, MDPI, vol. 12(2), pages 1-16, January.
    18. Chiara Passoni & Elisabetta Palumbo & Rui Pinho & Alessandra Marini, 2022. "The LCT Challenge: Defining New Design Objectives to Increase the Sustainability of Building Retrofit Interventions," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    19. Yun-Yi Zhang & Kai Kang & Jia-Rui Lin & Jian-Ping Zhang & Yi Zhang, 2020. "Building information modeling–based cyber-physical platform for building performance monitoring," International Journal of Distributed Sensor Networks, , vol. 16(2), pages 15501477209, February.
    20. Lee, Nayoon & Tae, Sungho & Gong, Yuri & Roh, Seungjun, 2017. "Integrated building life-cycle assessment model to support South Korea's green building certification system (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 43-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1883-:d:526137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.