IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1880-d526092.html
   My bibliography  Save this article

A Design Method for the Cogging Torque Minimization of Permanent Magnet Machines with a Segmented Stator Core Based on ANN Surrogate Models

Author

Listed:
  • Elia Brescia

    (Department of Electrical Engineering and Information Technology, Politecnico di Bari, 70126 Bari, Italy)

  • Donatello Costantino

    (Department of Electrical Engineering and Information Technology, Politecnico di Bari, 70126 Bari, Italy)

  • Paolo Roberto Massenio

    (Department of Electrical Engineering and Information Technology, Politecnico di Bari, 70126 Bari, Italy)

  • Vito Giuseppe Monopoli

    (Department of Electrical Engineering and Information Technology, Politecnico di Bari, 70126 Bari, Italy)

  • Francesco Cupertino

    (Department of Electrical Engineering and Information Technology, Politecnico di Bari, 70126 Bari, Italy)

  • Giuseppe Leonardo Cascella

    (Department of Electrical Engineering and Information Technology, Politecnico di Bari, 70126 Bari, Italy)

Abstract

Permanent magnet machines with segmented stator cores are affected by additional harmonic components of the cogging torque which cannot be minimized by conventional methods adopted for one-piece stator machines. In this study, a novel approach is proposed to minimize the cogging torque of such machines. This approach is based on the design of multiple independent shapes of the tooth tips through a topological optimization. Theoretical studies define a design formula that allows to choose the number of independent shapes to be designed, based on the number of stator core segments. Moreover, a computationally-efficient heuristic approach based on genetic algorithms and artificial neural network-based surrogate models solves the topological optimization and finds the optimal tooth tips shapes. Simulation studies with the finite element method validates the design formula and the effectiveness of the proposed method in suppressing the additional harmonic components. Moreover, a comparison with a conventional heuristic approach based on a genetic algorithm directly coupled to finite element analysis assesses the superiority of the proposed approach. Finally, a sensitivity analysis on assembling and manufacturing tolerances proves the robustness of the proposed design method.

Suggested Citation

  • Elia Brescia & Donatello Costantino & Paolo Roberto Massenio & Vito Giuseppe Monopoli & Francesco Cupertino & Giuseppe Leonardo Cascella, 2021. "A Design Method for the Cogging Torque Minimization of Permanent Magnet Machines with a Segmented Stator Core Based on ANN Surrogate Models," Energies, MDPI, vol. 14(7), pages 1-26, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1880-:d:526092
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1880/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1880/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ambra Torreggiani & Claudio Bianchini & Matteo Davoli & Alberto Bellini, 2019. "Design for Reliability: The Case of Fractional-Slot Surface Permanent-Magnet Machines," Energies, MDPI, vol. 12(9), pages 1-18, May.
    2. Diego Calabrese & Gioacchino Tricarico & Elia Brescia & Giuseppe Leonardo Cascella & Vito Giuseppe Monopoli & Francesco Cupertino, 2020. "Variable Structure Control of a Small Ducted Wind Turbine in the Whole Wind Speed Range Using a Luenberger Observer," Energies, MDPI, vol. 13(18), pages 1-23, September.
    3. Marco Palmieri & Salvatore Bozzella & Giuseppe Leonardo Cascella & Marco Bronzini & Marco Torresi & Francesco Cupertino, 2018. "Wind Micro-Turbine Networks for Urban Areas: Optimal Design and Power Scalability of Permanent Magnet Generators," Energies, MDPI, vol. 11(10), pages 1-21, October.
    4. Hui Zhang & Oskar Wallmark, 2017. "Limitations and Constraints of Eddy-Current Loss Models for Interior Permanent-Magnet Motors with Fractional-Slot Concentrated Windings," Energies, MDPI, vol. 10(3), pages 1-19, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oktay Karakaya & Murat Erhan Balci & Mehmet Hakan Hocaoglu, 2023. "Minimization of Voltage Harmonic Distortion of Synchronous Generators under Non-Linear Loading via Modulated Field Current," Energies, MDPI, vol. 16(4), pages 1-17, February.
    2. Jelena Loncarski & Vito Giuseppe Monopoli & Vitor Monteiro & Leposava Ristic & Milutin Jovanović, 2022. "Efficiency and Performance Optimization of State-of-the-Art “Multi-Phase, -Level, -Cell, -Port, -Motor” Electrical Drives and Renewable Energy Systems," Energies, MDPI, vol. 15(16), pages 1-3, August.
    3. Pierpaolo Dini & Sergio Saponara, 2022. "Review on Model Based Design of Advanced Control Algorithms for Cogging Torque Reduction in Power Drive Systems," Energies, MDPI, vol. 15(23), pages 1-29, November.
    4. Jie Yu & Youjun Zhang & Hongyuan Shen & Xiaoqin Zheng, 2022. "Adaptive Online Extraction Method of Slot Harmonics for Multiphase Induction Motor," Energies, MDPI, vol. 15(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Janusz Baran & Andrzej Jąderko, 2020. "An MPPT Control of a PMSG-Based WECS with Disturbance Compensation and Wind Speed Estimation," Energies, MDPI, vol. 13(23), pages 1-20, December.
    2. Diego Calabrese & Gioacchino Tricarico & Elia Brescia & Giuseppe Leonardo Cascella & Vito Giuseppe Monopoli & Francesco Cupertino, 2020. "Variable Structure Control of a Small Ducted Wind Turbine in the Whole Wind Speed Range Using a Luenberger Observer," Energies, MDPI, vol. 13(18), pages 1-23, September.
    3. Samith Sirimanna & Thanatheepan Balachandran & Kiruba Haran, 2022. "A Review on Magnet Loss Analysis, Validation, Design Considerations, and Reduction Strategies in Permanent Magnet Synchronous Motors," Energies, MDPI, vol. 15(17), pages 1-16, August.
    4. Jelena Loncarski & Vito Giuseppe Monopoli & Vitor Monteiro & Leposava Ristic & Milutin Jovanović, 2022. "Efficiency and Performance Optimization of State-of-the-Art “Multi-Phase, -Level, -Cell, -Port, -Motor” Electrical Drives and Renewable Energy Systems," Energies, MDPI, vol. 15(16), pages 1-3, August.
    5. Henda Zorgani Agrebi & Naourez Benhadj & Mohamed Chaieb & Farooq Sher & Roua Amami & Rafik Neji & Neil Mansfield, 2021. "Integrated Optimal Design of Permanent Magnet Synchronous Generator for Smart Wind Turbine Using Genetic Algorithm," Energies, MDPI, vol. 14(15), pages 1-20, July.
    6. Luca Salvadori & Annalisa Di Bernardino & Giorgio Querzoli & Simone Ferrari, 2021. "A Novel Automatic Method for the Urban Canyon Parametrization Needed by Turbulence Numerical Simulations for Wind Energy Potential Assessment," Energies, MDPI, vol. 14(16), pages 1-22, August.
    7. Armin Dietz & Antonino Oscar Di Tommaso & Fabrizio Marignetti & Rosario Miceli & Claudio Nevoloso, 2020. "Enhanced Flexible Algorithm for the Optimization of Slot Filling Factors in Electrical Machines," Energies, MDPI, vol. 13(5), pages 1-21, February.
    8. Peng Wang & Daorina Bao & Mingzhi Zhao & Zhongyu Shi & Fan Gao & Feng Han, 2023. "The Design, Analysis, and Optimization of a New Pitch Mechanism for Small Wind Turbines," Energies, MDPI, vol. 16(18), pages 1-25, September.
    9. José Genaro González-Hernández & Rubén Salas-Cabrera, 2021. "Wind Power Extraction Optimization by Dynamic Gain Scheduling Approximation Based on Non-Linear Functions for a WECS Based on a PMSG," Mathematics, MDPI, vol. 9(17), pages 1-19, August.
    10. José Antonio Cortajarena & Oscar Barambones & Patxi Alkorta & Jon Cortajarena, 2021. "Grid Frequency and Amplitude Control Using DFIG Wind Turbines in a Smart Grid," Mathematics, MDPI, vol. 9(2), pages 1-18, January.
    11. Lorenzo Alessi & José A. F. O. Correia & Nicholas Fantuzzi, 2019. "Initial Design Phase and Tender Designs of a Jacket Structure Converted into a Retrofitted Offshore Wind Turbine," Energies, MDPI, vol. 12(4), pages 1-28, February.
    12. Xiangjie Liu & Le Feng & Xiaobing Kong, 2022. "A Comparative Study of Robust MPC and Stochastic MPC of Wind Power Generation System," Energies, MDPI, vol. 15(13), pages 1-22, June.
    13. Stanisław Chudzik, 2023. "Wind Microturbine with Adjustable Blade Pitch Angle," Energies, MDPI, vol. 16(2), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1880-:d:526092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.