IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1725-d520834.html
   My bibliography  Save this article

Numerical Simulation of Acoustic Resonance Enhancement for Mean Flow Wind Energy Harvester as Well as Suppression for Pipeline

Author

Listed:
  • Liuyi Jiang

    (College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China)

  • Hong Zhang

    (National Engineering Laboratory for Pipeline Safety, MOE Key Laboratory of Petroleum Engineering, Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum, Beijing 102249, China)

  • Qingquan Duan

    (College of Safety and Ocean Engineering, China University of Petroleum, Beijing 102249, China)

  • Xiaoben Liu

    (National Engineering Laboratory for Pipeline Safety, MOE Key Laboratory of Petroleum Engineering, Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum, Beijing 102249, China)

Abstract

Acoustic resonance in closed side branches should be enhanced to improve the efficiency of wind energy harvesting equipment or thermo-acoustic engine. However, in gas pipeline transportation systems, this kind of acoustic resonance should be suppressed to avoid fatigue damage to the pipeline. Realizable k-ε delayed detached eddy simulations (DDES) were conducted to study the effect of different branch pipe shapes on acoustic resonance. At some flow velocities, the pressure amplitude of the simulation results is twice as large as that of the experimental results, but the simulation can accurately capture the flow velocity range where acoustic resonance occurs. The results prove the feasibility of the method of the equivalent diameter of the circular cross-section pipe and the square cross-section pipe to predict acoustic resonance. The pressure pulsation amplitude of acoustic resonance in a square cross-section pipe is significantly increased than that in a circular square cross-section pipe, indicating that the square cross-section branch configuration can be more conducive to improving the efficiency of wind energy harvesting. The influence of the angle between the branch and the main pipe on the acoustic resonance was studied for the first time, which has an obvious influence on the acoustic resonance. It is found that the design of a square wind energy harvester is better than that of a circular one; meanwhile, changing the branch angle can increase or suppress the acoustic resonance, which can improve the utilization efficiency of the acoustic resonance and provide a new method for suppressing the acoustic resonance.

Suggested Citation

  • Liuyi Jiang & Hong Zhang & Qingquan Duan & Xiaoben Liu, 2021. "Numerical Simulation of Acoustic Resonance Enhancement for Mean Flow Wind Energy Harvester as Well as Suppression for Pipeline," Energies, MDPI, vol. 14(6), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1725-:d:520834
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1725/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1725/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Hongjun & Zhao, Ying & Zhou, Tongming, 2018. "CFD analysis of energy harvesting from flow induced vibration of a circular cylinder with an attached free-to-rotate pentagram impeller," Applied Energy, Elsevier, vol. 212(C), pages 304-321.
    2. Seung-Min Jeong & Jeong-Yeol Choi, 2020. "Combined Diagnostic Analysis of Dynamic Combustion Characteristics in a Scramjet Engine," Energies, MDPI, vol. 13(15), pages 1-21, August.
    3. Yu, Yan S.W. & Sun, Daming & Zhang, Jie & Xu, Ya & Qi, Yun, 2017. "Study on a Pi-type mean flow acoustic engine capable of wind energy harvesting using a CFD model," Applied Energy, Elsevier, vol. 189(C), pages 602-612.
    4. Jun Li & Jun Hu & Chenkai Zhang, 2020. "Investigation of Vortical Structures and Turbulence Characteristics in Corner Separation in an Axial Compressor Stator Using DDES," Energies, MDPI, vol. 13(9), pages 1-17, April.
    5. Camilo A. Sedano & Frederik Berger & Hamid Rahimi & Omar D. Lopez Mejia & Martin Kühn & Bernhard Stoevesandt, 2019. "CFD Validation of a Model Wind Turbine by Means of Improved and Delayed Detached Eddy Simulation in OpenFOAM," Energies, MDPI, vol. 12(7), pages 1-16, April.
    6. Sun, Daming & Xu, Ya & Chen, Haijun & Shen, Qie & Zhang, Xuejun & Qiu, Limin, 2013. "Acoustic characteristics of a mean flow acoustic engine capable of wind energy harvesting: Effect of resonator tube length," Energy, Elsevier, vol. 55(C), pages 361-368.
    7. Zhu, Hongjun & Gao, Yue, 2018. "Hydrokinetic energy harvesting from flow-induced vibration of a circular cylinder with two symmetrical fin-shaped strips," Energy, Elsevier, vol. 165(PB), pages 1259-1281.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dibin Zhu, 2022. "Advance Energy Harvesting Technologies," Energies, MDPI, vol. 15(7), pages 1-3, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rashid Naseer & Huliang Dai & Abdessattar Abdelkefi & Lin Wang, 2019. "Comparative Study of Piezoelectric Vortex-Induced Vibration-Based Energy Harvesters with Multi-Stability Characteristics," Energies, MDPI, vol. 13(1), pages 1-24, December.
    2. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    3. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    4. Hassan Elahi & Marco Eugeni & Paolo Gaudenzi, 2018. "A Review on Mechanisms for Piezoelectric-Based Energy Harvesters," Energies, MDPI, vol. 11(7), pages 1-35, July.
    5. Chen, Zhenlin & Alam, Md. Mahbub & Qin, Bin & Zhou, Yu, 2020. "Energy harvesting from and vibration response of different diameter cylinders," Applied Energy, Elsevier, vol. 278(C).
    6. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei & Shang, Shijie, 2018. "Scavenging wind energy by a Y-shaped bi-stable energy harvester with curved wings," Energy, Elsevier, vol. 153(C), pages 400-412.
    7. Tamimi, V. & Wu, J. & Naeeni, S.T.O. & Shahvaghar-Asl, S., 2021. "Effects of dissimilar wakes on energy harvesting of Flow Induced Vibration (FIV) based converters with circular oscillator," Applied Energy, Elsevier, vol. 281(C).
    8. Lv, Yanfang & Sun, Liping & Bernitsas, Michael M. & Sun, Hai, 2021. "A comprehensive review of nonlinear oscillators in hydrokinetic energy harnessing using flow-induced vibrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    9. Ju, Suna & Ji, Chang-Hyeon, 2018. "Impact-based piezoelectric vibration energy harvester," Applied Energy, Elsevier, vol. 214(C), pages 139-151.
    10. Christina Hamdan & John Allport & Azadeh Sajedin, 2021. "Piezoelectric Power Generation from the Vortex-Induced Vibrations of a Semi-Cylinder Exposed to Water Flow," Energies, MDPI, vol. 14(21), pages 1-25, October.
    11. Hamlehdar, Maryam & Kasaeian, Alibakhsh & Safaei, Mohammad Reza, 2019. "Energy harvesting from fluid flow using piezoelectrics: A critical review," Renewable Energy, Elsevier, vol. 143(C), pages 1826-1838.
    12. Hu, Gang & Tse, K.T. & Wei, Minghai & Naseer, R. & Abdelkefi, A. & Kwok, K.C.S., 2018. "Experimental investigation on the efficiency of circular cylinder-based wind energy harvester with different rod-shaped attachments," Applied Energy, Elsevier, vol. 226(C), pages 682-689.
    13. Ya Xu & Jiangqi Yuan & Daming Sun & Dailiang Xie, 2022. "Piezoelectric Harvesting of Fluid Kinetic Energy Based on Flow-Induced Oscillation," Energies, MDPI, vol. 15(23), pages 1-11, December.
    14. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    15. Byeong-Jo Hwang & Seongki Min, 2023. "Numerical Investigation of the Effect of Supersonic Air Temperature on the Mixing Characteristics of Liquid Fuel," Energies, MDPI, vol. 16(1), pages 1-17, January.
    16. Latif, Usman & Dowell, Earl H. & Uddin, E. & Younis, M.Y. & Frisch, H.M., 2024. "Comparative analysis of flag based energy harvester undergoing extraneous induced excitation," Energy, Elsevier, vol. 295(C).
    17. Zhou, Zhiyong & Qin, Weiyang & Zhu, Pei, 2017. "Harvesting acoustic energy by coherence resonance of a bi-stable piezoelectric harvester," Energy, Elsevier, vol. 126(C), pages 527-534.
    18. Zhou, Zhiyong & Cao, Di & Huang, Haobo & Qin, Weiyang & Du, Wenfeng & Zhu, Pei, 2024. "Biomimetic swallowtail V-shaped attachments for enhanced low-speed wind energy harvesting by a galloping piezoelectric energy harvester," Energy, Elsevier, vol. 304(C).
    19. Yu, Yan S.W. & Sun, Daming & Zhang, Jie & Xu, Ya & Qi, Yun, 2017. "Study on a Pi-type mean flow acoustic engine capable of wind energy harvesting using a CFD model," Applied Energy, Elsevier, vol. 189(C), pages 602-612.
    20. Dongpeng Jia & Ning Wang & Yu Pan & Chaoyang Liu & Shiwei Wang & Kai Yang & Jian Liu, 2021. "Flow and Heat Transfer Characteristics of Supercritical N-Decane in Adjacent Cooling Channels with Opposite Flow Directions," Energies, MDPI, vol. 14(4), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1725-:d:520834. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.