IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3328-d261945.html
   My bibliography  Save this article

Predicting Performance of a District Heat Powered Adsorption Chiller by Means of an Artificial Neural Network

Author

Listed:
  • Tomasz Halon

    (Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland)

  • Ewa Pelinska-Olko

    (Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland)

  • Malgorzata Szyc

    (Fortum Power and Heat Polska, ul. Antoniego Slonimskiego 1A, 50-304 Wroclaw, Poland)

  • Bartosz Zajaczkowski

    (Faculty of Mechanical and Power Engineering, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland)

Abstract

In this paper, the feasibility of a multi-layer artificial neural network to predict both the cooling capacity and the COP of an adsorption chiller working in a real pilot plant is presented. The ANN was trained to accurately predict the performance of the device using data acquired over several years of operation. The number of neurons used by the ANN should be selected individually depending on the size of the training base. The optimal number of datasets in a training base is suggested to be 35. The predicted cooling capacity curves for a given adsorption chiller driven by the district heating are presented. Predictions of the artificial neural network used show good correlation with experimental results, with the mean relative deviation as low as 1.36%. The character of the cooling capacity curve is physically accurate, and during normal operation for cooling capacities ≥8 kW, the errors rarely exceed 1%.

Suggested Citation

  • Tomasz Halon & Ewa Pelinska-Olko & Malgorzata Szyc & Bartosz Zajaczkowski, 2019. "Predicting Performance of a District Heat Powered Adsorption Chiller by Means of an Artificial Neural Network," Energies, MDPI, vol. 12(17), pages 1-11, August.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3328-:d:261945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3328/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3328/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    2. Hou, Zhijian & Lian, Zhiwei & Yao, Ye & Yuan, Xinjian, 2006. "Cooling-load prediction by the combination of rough set theory and an artificial neural-network based on data-fusion technique," Applied Energy, Elsevier, vol. 83(9), pages 1033-1046, September.
    3. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    4. Teng, W.S. & Leong, K.C. & Chakraborty, A., 2016. "Revisiting adsorption cooling cycle from mathematical modelling to system development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 315-332.
    5. Ommen, Torben & Markussen, Wiebke Brix & Elmegaard, Brian, 2016. "Lowering district heating temperatures – Impact to system performance in current and future Danish energy scenarios," Energy, Elsevier, vol. 94(C), pages 273-291.
    6. Lazrak, Amine & Boudehenn, François & Bonnot, Sylvain & Fraisse, Gilles & Leconte, Antoine & Papillon, Philippe & Souyri, Bernard, 2016. "Development of a dynamic artificial neural network model of an absorption chiller and its experimental validation," Renewable Energy, Elsevier, vol. 86(C), pages 1009-1022.
    7. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2012. "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1340-1358.
    8. Labus, J. & Hernández, J.A. & Bruno, J.C. & Coronas, A., 2012. "Inverse neural network based control strategy for absorption chillers," Renewable Energy, Elsevier, vol. 39(1), pages 471-482.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Chorowski & Piotr Pyrka & Zbigniew Rogala & Piotr Czupryński, 2019. "Experimental Study of Performance Improvement of 3-Bed and 2-Evaporator Adsorption Chiller by Control Optimization," Energies, MDPI, vol. 12(20), pages 1-17, October.
    2. Jaroslaw Krzywanski, 2019. "A General Approach in Optimization of Heat Exchangers by Bio-Inspired Artificial Intelligence Methods," Energies, MDPI, vol. 12(23), pages 1-32, November.
    3. Bartlomiej Nalepa & Tomasz Halon, 2021. "Recommendations for Running a Tandem of Adsorption Chillers Connected in Series and Powered by Low-Temperature Heat from District Heating Network," Energies, MDPI, vol. 14(16), pages 1-17, August.
    4. Miguel A. Jaramillo-Morán & Agustín García-García, 2019. "Applying Artificial Neural Networks to Forecast European Union Allowance Prices: The Effect of Information from Pollutant-Related Sectors," Energies, MDPI, vol. 12(23), pages 1-18, November.
    5. Blanca Foliaco & Antonio Bula & Peter Coombes, 2020. "Improving the Gordon-Ng Model and Analyzing Thermodynamic Parameters to Evaluate Performance in a Water-Cooled Centrifugal Chiller," Energies, MDPI, vol. 13(9), pages 1-20, April.
    6. Hossein Moayedi & Amir Mosavi, 2021. "Suggesting a Stochastic Fractal Search Paradigm in Combination with Artificial Neural Network for Early Prediction of Cooling Load in Residential Buildings," Energies, MDPI, vol. 14(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
    2. Hwang, Jun Kwon & Yun, Geun Young & Lee, Sukho & Seo, Hyeongjoon & Santamouris, Mat, 2020. "Using deep learning approaches with variable selection process to predict the energy performance of a heating and cooling system," Renewable Energy, Elsevier, vol. 149(C), pages 1227-1245.
    3. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    4. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    5. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    6. Lazrak, Amine & Boudehenn, François & Bonnot, Sylvain & Fraisse, Gilles & Leconte, Antoine & Papillon, Philippe & Souyri, Bernard, 2016. "Development of a dynamic artificial neural network model of an absorption chiller and its experimental validation," Renewable Energy, Elsevier, vol. 86(C), pages 1009-1022.
    7. Qiu, Changyu & Yi, Yun Kyu & Wang, Meng & Yang, Hongxing, 2020. "Coupling an artificial neuron network daylighting model and building energy simulation for vacuum photovoltaic glazing," Applied Energy, Elsevier, vol. 263(C).
    8. Shi, Lei & Zhang, Shuai & Arshad, Adeel & Hu, Yanwei & He, Yurong & Yan, Yuying, 2021. "Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Harish Kumar Ghritlahre & Purvi Chandrakar & Ashfaque Ahmad, 2021. "A Comprehensive Review on Performance Prediction of Solar Air Heaters Using Artificial Neural Network," Annals of Data Science, Springer, vol. 8(3), pages 405-449, September.
    10. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2012. "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1340-1358.
    11. Machado, Diogo Ortiz & Chicaiza, William D. & Escaño, Juan M. & Gallego, Antonio J. & de Andrade, Gustavo A. & Normey-Rico, Julio E. & Bordons, Carlos & Camacho, Eduardo F., 2023. "Digital twin of an absorption chiller for solar cooling," Renewable Energy, Elsevier, vol. 208(C), pages 36-51.
    12. Gunasekar, N. & Mohanraj, M. & Velmurugan, V., 2015. "Artificial neural network modeling of a photovoltaic-thermal evaporator of solar assisted heat pumps," Energy, Elsevier, vol. 93(P1), pages 908-922.
    13. Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    14. Re Cecconi, F. & Moretti, N. & Tagliabue, L.C., 2019. "Application of artificial neutral network and geographic information system to evaluate retrofit potential in public school buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 266-277.
    15. Dongjun Suh & Seongju Chang, 2012. "An Energy and Water Resource Demand Estimation Model for Multi-Family Housing Complexes in Korea," Energies, MDPI, vol. 5(11), pages 1-20, November.
    16. Cai, Hanmin & You, Shi & Wu, Jianzhong, 2020. "Agent-based distributed demand response in district heating systems," Applied Energy, Elsevier, vol. 262(C).
    17. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    18. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    19. Zhenchang Liu & Aiguo Wu & Haitang Wen, 2024. "Research on Energy-Saving Control Strategies for Single-Effect Absorption Refrigeration Systems," Energies, MDPI, vol. 17(18), pages 1-25, September.
    20. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3328-:d:261945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.