IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v181y2019icp782-792.html
   My bibliography  Save this article

Model reduction by time aggregation for optimal design of energy supply systems by an MILP hierarchical branch and bound method

Author

Listed:
  • Yokoyama, Ryohei
  • Shinano, Yuji
  • Wakayama, Yuki
  • Wakui, Tetsuya

Abstract

Mixed-integer linear programming (MILP) methods have been applied widely to optimal design of energy supply systems in consideration of multi-period operation. A hierarchical MILP method has been proposed to solve such optimal design problems efficiently. An original problem has been solved by dividing it into a relaxed optimal design problem at the upper level and optimal operation problems which are independent of one another at the lower level. In addition, some strategies have been proposed to enhance the computation efficiency furthermore. In this paper, a method of reducing model by time aggregation is proposed as a novel strategy to search design candidates efficiently in the relaxed optimal design problem at the upper level. In addition, the previous strategies are modified in accordance with the novel strategy. This method is realized only by clustering periods and averaging energy demands for clustered periods, while it guarantees to derive the optimal solution. Thus, it may decrease the computation time at the upper level. Through a case study on the optimal design of a gas turbine cogeneration system, it is clarified how the model reduction is effective to enhance the computation efficiency in comparison and combination with the modified previous strategies.

Suggested Citation

  • Yokoyama, Ryohei & Shinano, Yuji & Wakayama, Yuki & Wakui, Tetsuya, 2019. "Model reduction by time aggregation for optimal design of energy supply systems by an MILP hierarchical branch and bound method," Energy, Elsevier, vol. 181(C), pages 782-792.
  • Handle: RePEc:eee:energy:v:181:y:2019:i:c:p:782-792
    DOI: 10.1016/j.energy.2019.04.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219306899
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "Optimal design of distributed energy resource systems coupled with energy distribution networks," Energy, Elsevier, vol. 85(C), pages 433-448.
    2. Nahmmacher, Paul & Schmid, Eva & Hirth, Lion & Knopf, Brigitte, 2016. "Carpe diem: A novel approach to select representative days for long-term power system modeling," Energy, Elsevier, vol. 112(C), pages 430-442.
    3. Bahl, Björn & Kümpel, Alexander & Seele, Hagen & Lampe, Matthias & Bardow, André, 2017. "Time-series aggregation for synthesis problems by bounding error in the objective function," Energy, Elsevier, vol. 135(C), pages 900-912.
    4. Carvalho, Monica & Serra, Luis Maria & Lozano, Miguel Angel, 2011. "Optimal synthesis of trigeneration systems subject to environmental constraints," Energy, Elsevier, vol. 36(6), pages 3779-3790.
    5. Piacentino, Antonio & Barbaro, Chiara, 2013. "A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part II: Analysis of the applicative potential," Applied Energy, Elsevier, vol. 111(C), pages 1222-1238.
    6. Lozano, Miguel A. & Ramos, Jose C. & Serra, Luis M., 2010. "Cost optimization of the design of CHCP (combined heat, cooling and power) systems under legal constraints," Energy, Elsevier, vol. 35(2), pages 794-805.
    7. Buoro, D. & Casisi, M. & De Nardi, A. & Pinamonti, P. & Reini, M., 2013. "Multicriteria optimization of a distributed energy supply system for an industrial area," Energy, Elsevier, vol. 58(C), pages 128-137.
    8. Voll, Philip & Klaffke, Carsten & Hennen, Maike & Bardow, André, 2013. "Automated superstructure-based synthesis and optimization of distributed energy supply systems," Energy, Elsevier, vol. 50(C), pages 374-388.
    9. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    10. Yang, Yun & Zhang, Shijie & Xiao, Yunhan, 2015. "An MILP (mixed integer linear programming) model for optimal design of district-scale distributed energy resource systems," Energy, Elsevier, vol. 90(P2), pages 1901-1915.
    11. Schütz, Thomas & Schraven, Markus Hans & Fuchs, Marcus & Remmen, Peter & Müller, Dirk, 2018. "Comparison of clustering algorithms for the selection of typical demand days for energy system synthesis," Renewable Energy, Elsevier, vol. 129(PA), pages 570-582.
    12. Piacentino, Antonio & Barbaro, Chiara & Cardona, Fabio & Gallea, Roberto & Cardona, Ennio, 2013. "A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part I: Description of the method," Applied Energy, Elsevier, vol. 111(C), pages 1204-1221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timo Kannengießer & Maximilian Hoffmann & Leander Kotzur & Peter Stenzel & Fabian Schuetz & Klaus Peters & Stefan Nykamp & Detlef Stolten & Martin Robinius, 2019. "Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System," Energies, MDPI, vol. 12(14), pages 1-27, July.
    2. Xia, Tian & Huang, Wujing & Lu, Xi & Zhang, Ning & Kang, Chongqing, 2020. "Planning district multiple energy systems considering year-round operation," Energy, Elsevier, vol. 213(C).
    3. Cuisinier, E. & Lemaire, P. & Ruby, A. & Bourasseau, C. & Penz, B., 2023. "Impact of operational modelling choices on techno-economic modelling of local energy systems," Energy, Elsevier, vol. 276(C).
    4. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    5. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    6. Muhammad Faisal Shehzad & Mainak Dan & Valerio Mariani & Seshadhri Srinivasan & Davide Liuzza & Carmine Mongiello & Roberto Saraceno & Luigi Glielmo, 2021. "A Heuristic Algorithm for Combined Heat and Power System Operation Management," Energies, MDPI, vol. 14(6), pages 1-22, March.
    7. Shen, Feifei & Zhao, Liang & Du, Wenli & Zhong, Weimin & Qian, Feng, 2020. "Large-scale industrial energy systems optimization under uncertainty: A data-driven robust optimization approach," Applied Energy, Elsevier, vol. 259(C).
    8. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    9. Yokoyama, Ryohei & Takeuchi, Kotaro & Shinano, Yuji & Wakui, Tetsuya, 2021. "Effect of model reduction by time aggregation in multiobjective optimal design of energy supply systems by a hierarchical MILP method," Energy, Elsevier, vol. 228(C).
    10. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    11. Iijima, Fuyumi & Ikeda, Shintaro & Nagai, Tatsuo, 2022. "Automated computational design method for energy systems in buildings using capacity and operation optimization," Applied Energy, Elsevier, vol. 306(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yokoyama, Ryohei & Takeuchi, Kotaro & Shinano, Yuji & Wakui, Tetsuya, 2021. "Effect of model reduction by time aggregation in multiobjective optimal design of energy supply systems by a hierarchical MILP method," Energy, Elsevier, vol. 228(C).
    2. Yokoyama, Ryohei & Tokunaga, Akira & Wakui, Tetsuya, 2018. "Robust optimal design of energy supply systems under uncertain energy demands based on a mixed-integer linear model," Energy, Elsevier, vol. 153(C), pages 159-169.
    3. Yokoyama, Ryohei & Shinano, Yuji & Taniguchi, Syusuke & Wakui, Tetsuya, 2019. "Search for K-best solutions in optimal design of energy supply systems by an extended MILP hierarchical branch and bound method," Energy, Elsevier, vol. 184(C), pages 45-57.
    4. Maximilian Hoffmann & Leander Kotzur & Detlef Stolten & Martin Robinius, 2020. "A Review on Time Series Aggregation Methods for Energy System Models," Energies, MDPI, vol. 13(3), pages 1-61, February.
    5. Hoffmann, Maximilian & Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron & Kotzur, Leander & Stolten, Detlef, 2021. "Typical periods or typical time steps? A multi-model analysis to determine the optimal temporal aggregation for energy system models," Applied Energy, Elsevier, vol. 304(C).
    6. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    7. Hoffmann, Maximilian & Kotzur, Leander & Stolten, Detlef, 2022. "The Pareto-optimal temporal aggregation of energy system models," Applied Energy, Elsevier, vol. 315(C).
    8. Mancarella, Pierluigi, 2014. "MES (multi-energy systems): An overview of concepts and evaluation models," Energy, Elsevier, vol. 65(C), pages 1-17.
    9. Wakui, Tetsuya & Yokoyama, Ryohei, 2014. "Optimal structural design of residential cogeneration systems in consideration of their operating restrictions," Energy, Elsevier, vol. 64(C), pages 719-733.
    10. Mirko M. Stojiljković & Mladen M. Stojiljković & Bratislav D. Blagojević, 2014. "Multi-Objective Combinatorial Optimization of Trigeneration Plants Based on Metaheuristics," Energies, MDPI, vol. 7(12), pages 1-28, December.
    11. Schütz, Thomas & Schraven, Markus Hans & Remy, Sebastian & Granacher, Julia & Kemetmüller, Dominik & Fuchs, Marcus & Müller, Dirk, 2017. "Optimal design of energy conversion units for residential buildings considering German market conditions," Energy, Elsevier, vol. 139(C), pages 895-915.
    12. Zhigang Duan & Yamin Yan & Xiaohan Yan & Qi Liao & Wan Zhang & Yongtu Liang & Tianqi Xia, 2017. "An MILP Method for Design of Distributed Energy Resource System Considering Stochastic Energy Supply and Demand," Energies, MDPI, vol. 11(1), pages 1-23, December.
    13. Benedetto Conte & Joan Carles Bruno & Alberto Coronas, 2016. "Optimal Cooling Load Sharing Strategies for Different Types of Absorption Chillers in Trigeneration Plants," Energies, MDPI, vol. 9(8), pages 1-16, July.
    14. Schütz, Thomas & Schraven, Markus Hans & Fuchs, Marcus & Remmen, Peter & Müller, Dirk, 2018. "Comparison of clustering algorithms for the selection of typical demand days for energy system synthesis," Renewable Energy, Elsevier, vol. 129(PA), pages 570-582.
    15. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    16. Wakui, Tetsuya & Kawayoshi, Hiroki & Yokoyama, Ryohei, 2016. "Optimal structural design of residential power and heat supply devices in consideration of operational and capital recovery constraints," Applied Energy, Elsevier, vol. 163(C), pages 118-133.
    17. Teichgraeber, Holger & Brandt, Adam R., 2022. "Time-series aggregation for the optimization of energy systems: Goals, challenges, approaches, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Jing, Rui & Wang, Meng & Zhang, Zhihui & Wang, Xiaonan & Li, Ning & Shah, Nilay & Zhao, Yingru, 2019. "Distributed or centralized? Designing district-level urban energy systems by a hierarchical approach considering demand uncertainties," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Giaouris, Damian & Papadopoulos, Athanasios I. & Ziogou, Chrysovalantou & Ipsakis, Dimitris & Voutetakis, Spyros & Papadopoulou, Simira & Seferlis, Panos & Stergiopoulos, Fotis & Elmasides, Costas, 2013. "Performance investigation of a hybrid renewable power generation and storage system using systemic power management models," Energy, Elsevier, vol. 61(C), pages 621-635.
    20. Lythcke-Jørgensen, Christoffer & Ensinas, Adriano Viana & Münster, Marie & Haglind, Fredrik, 2016. "A methodology for designing flexible multi-generation systems," Energy, Elsevier, vol. 110(C), pages 34-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:181:y:2019:i:c:p:782-792. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.