IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1461-d512415.html
   My bibliography  Save this article

A Production Prediction Method for Shale Gas Wells Based on Multiple Regression

Author

Listed:
  • Wente Niu

    (School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101400, China
    Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065000, China
    Research Institute of Petroleum Exploration and Development, Beijing 100089, China)

  • Jialiang Lu

    (School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101400, China
    Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065000, China
    Research Institute of Petroleum Exploration and Development, Beijing 100089, China)

  • Yuping Sun

    (Research Institute of Petroleum Exploration and Development, Beijing 100089, China)

Abstract

The estimated ultimate recovery (EUR) of a single shale gas well is one of the important evaluation indicators for the scale and benefit development of shale gas, which is affected by many factors such as geological and engineering, so its accurate prediction is difficult. In order to realize the accurate prediction of ultimate recovery, this study considered 172 shale gas wells in the Weiyuan block as samples and selected 19 geological and engineering factors that affect the ultimate recovery of shale gas wells. Furthermore, eight key controlling factors were selected by means of the Pearson correlation coefficient and maximum mutual information coefficient comprehensive evaluation method. The data were divided into training and testing samples. Different numbers of training samples were selected and seven schemes were designed. Based on the key controlling factors, the ultimate recovery prediction model for shale gas wells in this block was established through multiple regression methods. The effectiveness of the prediction model was verified by analyzing the testing samples. The result shows that with the increase of the size of training samples, the error of the ultimate recovery predicted by the model gradually decreases gradually. When predicting the single gas well, the average absolute error of ultimate recovery is less than 20% if the number of the training gas well is more than 80. When analyzing the development potential of similar blocks without drilling, the error of the sum of ultimate recovery is less than 10% if the size of the training gas well reaches 60.

Suggested Citation

  • Wente Niu & Jialiang Lu & Yuping Sun, 2021. "A Production Prediction Method for Shale Gas Wells Based on Multiple Regression," Energies, MDPI, vol. 14(5), pages 1-11, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1461-:d:512415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1461/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1461/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Ke & Li, Haitao & Wang, Junchao & Jiang, Beibei & Bu, Chengzhong & Zhang, Qing & Luo, Wei, 2017. "Predicting production and estimated ultimate recoveries for shale gas wells: A new methodology approach," Applied Energy, Elsevier, vol. 206(C), pages 1416-1431.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Wente & Lu, Jialiang & Sun, Yuping & Guo, Wei & Liu, Yuyang & Mu, Ying, 2022. "Development of visual prediction model for shale gas wells production based on screening main controlling factors," Energy, Elsevier, vol. 250(C).
    2. Niu, Wente & Sun, Yuping & Zhang, Xiaowei & Lu, Jialiang & Liu, Hualin & Li, Qiaojing & Mu, Ying, 2023. "An ensemble transfer learning strategy for production prediction of shale gas wells," Energy, Elsevier, vol. 275(C).
    3. Min, Chao & Wen, Guoquan & Gou, Liangjie & Li, Xiaogang & Yang, Zhaozhong, 2023. "Interpretability and causal discovery of the machine learning models to predict the production of CBM wells after hydraulic fracturing," Energy, Elsevier, vol. 285(C).
    4. Lixia Kang & Wei Guo & Xiaowei Zhang & Yuyang Liu & Zhaoyuan Shao, 2022. "Differentiation and Prediction of Shale Gas Production in Horizontal Wells: A Case Study of the Weiyuan Shale Gas Field, China," Energies, MDPI, vol. 15(17), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Wenrui & Zhang, Chaomo & Jiang, Shu & Liao, Yong & Shi, Yuanhui & Feng, Aiguo & Young, Steven, 2022. "Study on pressure-boosting stimulation technology in shale gas horizontal wells in the Fuling shale gas field," Energy, Elsevier, vol. 254(PB).
    2. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    3. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    4. Zhang, Xian-min & Chen, Bai-yan-yue & Zheng, Zhuang-zhuang & Feng, Qi-hong & Fan, Bin, 2023. "New methods of coalbed methane production analysis based on the generalized gamma distribution and field applications," Applied Energy, Elsevier, vol. 350(C).
    5. Niu, Wente & Lu, Jialiang & Sun, Yuping & Zhang, Xiaowei & Li, Qiaojing & Cao, Xu & Liang, Pingping & Zhan, Hongming, 2024. "Techno-economic integration evaluation in shale gas development based on ensemble learning," Applied Energy, Elsevier, vol. 357(C).
    6. Lei Tan & Lihua Zuo & Binbin Wang, 2018. "Methods of Decline Curve Analysis for Shale Gas Reservoirs," Energies, MDPI, vol. 11(3), pages 1-18, March.
    7. Gong, Jianming & Qiu, Zhen & Zou, Caineng & Wang, Hongyan & Shi, Zhensheng, 2020. "An integrated assessment system for shale gas resources associated with graptolites and its application," Applied Energy, Elsevier, vol. 262(C).
    8. Li, Jing & Wu, Keliu & Chen, Zhangxin & Wang, Wenyang & Yang, Bin & Wang, Kun & Luo, Jia & Yu, Renjie, 2019. "Effects of energetic heterogeneity on gas adsorption and gas storage in geologic shale systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Yang, Run & Liu, Xiangui & Yu, Rongze & Hu, Zhiming & Duan, Xianggang, 2022. "Long short-term memory suggests a model for predicting shale gas production," Applied Energy, Elsevier, vol. 322(C).
    10. Taha Yehia & Ali Wahba & Sondos Mostafa & Omar Mahmoud, 2022. "Suitability of Different Machine Learning Outlier Detection Algorithms to Improve Shale Gas Production Data for Effective Decline Curve Analysis," Energies, MDPI, vol. 15(23), pages 1-25, November.
    11. Xu, WenLong & Yu, Hao & Micheal, Marembo & Huang, HanWei & Liu, He & Wu, HengAn, 2023. "An integrated model for fracture propagation and production performance of thermal enhanced shale gas recovery," Energy, Elsevier, vol. 263(PA).
    12. Kant, Michael A. & Rossi, Edoardo & Duss, Jonas & Amann, Florian & Saar, Martin O. & Rudolf von Rohr, Philipp, 2018. "Demonstration of thermal borehole enlargement to facilitate controlled reservoir engineering for deep geothermal, oil or gas systems," Applied Energy, Elsevier, vol. 212(C), pages 1501-1509.
    13. You, Xu-Tao & Liu, Jian-Yi & Jia, Chun-Sheng & Li, Jun & Liao, Xin-Yi & Zheng, Ai-Wei, 2019. "Production data analysis of shale gas using fractal model and fuzzy theory: Evaluating fracturing heterogeneity," Applied Energy, Elsevier, vol. 250(C), pages 1246-1259.
    14. Ahn, Yuchan & Kim, Junghwan & Kwon, Joseph Sang-Il, 2020. "Optimal design of supply chain network with carbon dioxide injection for enhanced shale gas recovery," Applied Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1461-:d:512415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.