Differentiation and Prediction of Shale Gas Production in Horizontal Wells: A Case Study of the Weiyuan Shale Gas Field, China
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wente Niu & Jialiang Lu & Yuping Sun, 2021. "A Production Prediction Method for Shale Gas Wells Based on Multiple Regression," Energies, MDPI, vol. 14(5), pages 1-11, March.
- Dongkwon Han & Sunil Kwon, 2021. "Application of Machine Learning Method of Data-Driven Deep Learning Model to Predict Well Production Rate in the Shale Gas Reservoirs," Energies, MDPI, vol. 14(12), pages 1-24, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jianliang Xu & Yingjie Xu & Yong Wang & Yong Tang, 2022. "Multi-Well Pressure Interference and Gas Channeling Control in W Shale Gas Reservoir Based on Numerical Simulation," Energies, MDPI, vol. 16(1), pages 1-13, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bin Yang & Xin Zhu & Boan Wei & Minzhang Liu & Yifan Li & Zhihan Lv & Faming Wang, 2023. "Computer Vision and Machine Learning Methods for Heat Transfer and Fluid Flow in Complex Structural Microchannels: A Review," Energies, MDPI, vol. 16(3), pages 1-24, February.
- Fargalla, Mandella Ali M. & Yan, Wei & Deng, Jingen & Wu, Tao & Kiyingi, Wyclif & Li, Guangcong & Zhang, Wei, 2024. "TimeNet: Time2Vec attention-based CNN-BiGRU neural network for predicting production in shale and sandstone gas reservoirs," Energy, Elsevier, vol. 290(C).
- Niu, Wente & Sun, Yuping & Zhang, Xiaowei & Lu, Jialiang & Liu, Hualin & Li, Qiaojing & Mu, Ying, 2023. "An ensemble transfer learning strategy for production prediction of shale gas wells," Energy, Elsevier, vol. 275(C).
- Min, Chao & Wen, Guoquan & Gou, Liangjie & Li, Xiaogang & Yang, Zhaozhong, 2023. "Interpretability and causal discovery of the machine learning models to predict the production of CBM wells after hydraulic fracturing," Energy, Elsevier, vol. 285(C).
- Niu, Wente & Lu, Jialiang & Sun, Yuping & Guo, Wei & Liu, Yuyang & Mu, Ying, 2022. "Development of visual prediction model for shale gas wells production based on screening main controlling factors," Energy, Elsevier, vol. 250(C).
- Han, Sun & Zhenghao, Meng & Meilin, Li & Xiaohui, Yang & Xiaoxue, Wang, 2023. "Global supply sustainability assessment of critical metals for clean energy technology," Resources Policy, Elsevier, vol. 85(PB).
More about this item
Keywords
shale gas; grey correlation method; multiple linear regression; production evaluation; main control factor; estimated ultimate recovery;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6161-:d:896984. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.