IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p8835-d982198.html
   My bibliography  Save this article

Suitability of Different Machine Learning Outlier Detection Algorithms to Improve Shale Gas Production Data for Effective Decline Curve Analysis

Author

Listed:
  • Taha Yehia

    (Department of Petroleum Engineering, Faculty of Engineering and Technology, Future University in Egypt (FUE), Cairo 11835, Egypt)

  • Ali Wahba

    (Department of Petroleum Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43512, Egypt)

  • Sondos Mostafa

    (Department of Petroleum Engineering, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43512, Egypt)

  • Omar Mahmoud

    (Department of Petroleum Engineering, Faculty of Engineering and Technology, Future University in Egypt (FUE), Cairo 11835, Egypt)

Abstract

Shale gas reservoirs have huge amounts of reserves. Economically evaluating these reserves is challenging due to complex driving mechanisms, complex drilling and completion configurations, and the complexity of controlling the producing conditions. Decline Curve Analysis (DCA) is historically considered the easiest method for production prediction of unconventional reservoirs as it only requires production history. Besides uncertainties in selecting a suitable DCA model to match the production behavior of the shale gas wells, the production data are usually noisy because of the changing choke size used to control the bottom hole flowing pressure and the multiple shut-ins to remove the associated water. Removing this noise from the data is important for effective DCA prediction. In this study, 12 machine learning outlier detection algorithms were investigated to determine the one most suitable for improving the quality of production data. Five of them were found not suitable, as they remove complete portions of the production data rather than scattered data points. The other seven algorithms were deeply investigated, assuming that 20% of the production data are outliers. During the work, eight DCA models were studied and applied. Different recommendations were stated regarding their sensitivity to noise. The results showed that the clustered based outlier factor, k-nearest neighbor, and the angular based outlier factor algorithms are the most effective algorithms for improving the data quality for DCA, while the stochastic outlier selection and subspace outlier detection algorithms were found to be the least effective. Additionally, DCA models, such as the Arps, Duong, and Wang models, were found to be less sensitive to removing noise, even with different algorithms. Meanwhile, power law exponential, logistic growth model, and stretched exponent production decline models showed more sensitivity to removing the noise, with varying performance under different outlier-removal algorithms. This work introduces the best combination of DCA models and outlier-detection algorithms, which could be used to reduce the uncertainties related to production forecasting and reserve estimation of shale gas reservoirs.

Suggested Citation

  • Taha Yehia & Ali Wahba & Sondos Mostafa & Omar Mahmoud, 2022. "Suitability of Different Machine Learning Outlier Detection Algorithms to Improve Shale Gas Production Data for Effective Decline Curve Analysis," Energies, MDPI, vol. 15(23), pages 1-25, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8835-:d:982198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/8835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/8835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Douglas M. Hawkins, 1980. "Critical Values for Identifying Outliers," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(1), pages 95-96, March.
    2. Wang, Ke & Li, Haitao & Wang, Junchao & Jiang, Beibei & Bu, Chengzhong & Zhang, Qing & Luo, Wei, 2017. "Predicting production and estimated ultimate recoveries for shale gas wells: A new methodology approach," Applied Energy, Elsevier, vol. 206(C), pages 1416-1431.
    3. Markus Goldstein & Seiichi Uchida, 2016. "A Comparative Evaluation of Unsupervised Anomaly Detection Algorithms for Multivariate Data," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-31, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taha Yehia & Ahmed Naguib & Mostafa M. Abdelhafiz & Gehad M. Hegazy & Omar Mahmoud, 2023. "Probabilistic Decline Curve Analysis: State-of-the-Art Review," Energies, MDPI, vol. 16(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Durgesh Samariya & Amit Thakkar, 2023. "A Comprehensive Survey of Anomaly Detection Algorithms," Annals of Data Science, Springer, vol. 10(3), pages 829-850, June.
    2. Yin, Sihua & Yang, Haidong & Xu, Kangkang & Zhu, Chengjiu & Zhang, Shaqing & Liu, Guosheng, 2022. "Dynamic real–time abnormal energy consumption detection and energy efficiency optimization analysis considering uncertainty," Applied Energy, Elsevier, vol. 307(C).
    3. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    4. Davide Nicola Continanza & Andrea del Monaco & Marco di Lucido & Daniele Figoli & Pasquale Maddaloni & Filippo Quarta & Giuseppe Turturiello, 2023. "Stacking machine learning models for anomaly detection: comparing AnaCredit to other banking data sets," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Data science in central banking: applications and tools, volume 59, Bank for International Settlements.
    5. Shi, Wenrui & Zhang, Chaomo & Jiang, Shu & Liao, Yong & Shi, Yuanhui & Feng, Aiguo & Young, Steven, 2022. "Study on pressure-boosting stimulation technology in shale gas horizontal wells in the Fuling shale gas field," Energy, Elsevier, vol. 254(PB).
    6. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    7. Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
    8. Priyanga Dilini Talagala & Rob J Hyndman & Kate Smith-Miles, 2019. "Anomaly Detection in High Dimensional Data," Monash Econometrics and Business Statistics Working Papers 20/19, Monash University, Department of Econometrics and Business Statistics.
    9. Sevvandi Kandanaarachchi & Mario A Munoz & Rob J Hyndman & Kate Smith-Miles, 2018. "On normalization and algorithm selection for unsupervised outlier detection," Monash Econometrics and Business Statistics Working Papers 16/18, Monash University, Department of Econometrics and Business Statistics.
    10. Damian Przekop, 2020. "Feature Engineering for Anti-Fraud Models Based on Anomaly Detection," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 12(3), pages 301-316, September.
    11. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    12. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    13. Gaucher, Solenne & Klopp, Olga & Robin, Geneviève, 2021. "Outlier detection in networks with missing links," Computational Statistics & Data Analysis, Elsevier, vol. 164(C).
    14. Priyanga Dilini Talagala & Rob J Hyndman & Catherine Leigh & Kerrie Mengersen & Kate Smith-Miles, 2019. "A Feature-Based Framework for Detecting Technical Outliers in Water-Quality Data from In Situ Sensors," Monash Econometrics and Business Statistics Working Papers 1/19, Monash University, Department of Econometrics and Business Statistics.
    15. Piero Mazzarisi & Adele Ravagnani & Paola Deriu & Fabrizio Lillo & Francesca Medda & Antonio Russo, 2022. "A machine learning approach to support decision in insider trading detection," Papers 2212.05912, arXiv.org.
    16. Zhang, Xian-min & Chen, Bai-yan-yue & Zheng, Zhuang-zhuang & Feng, Qi-hong & Fan, Bin, 2023. "New methods of coalbed methane production analysis based on the generalized gamma distribution and field applications," Applied Energy, Elsevier, vol. 350(C).
    17. Andrzej Chmielowiec, 2021. "Algorithm for error-free determination of the variance of all contiguous subsequences and fixed-length contiguous subsequences for a sequence of industrial measurement data," Computational Statistics, Springer, vol. 36(4), pages 2813-2840, December.
    18. Marc Chataigner & Stéphane Crépey & Jiang Pu, 2020. "Nowcasting Networks," Post-Print hal-03910123, HAL.
    19. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    20. Cian Ryan & Finbarr Murphy & Martin Mullins, 2019. "Semiautonomous Vehicle Risk Analysis: A Telematics‐Based Anomaly Detection Approach," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1125-1140, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:8835-:d:982198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.