IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1453-d512165.html
   My bibliography  Save this article

Control-Oriented, Data-Driven Models of Thermal Dynamics

Author

Listed:
  • Ljuboslav Boskic

    (Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
    Nevada National Security Site, Special Technologies Laboratory, Santa Barbara, CA 93117, USA)

  • Igor Mezic

    (Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA)

Abstract

We investigate data-driven, simple-to-implement residential environmental models that can serve as the basis for energy saving algorithms in both retrofits and new designs of residential buildings. Despite the nonlinearity of the underlying dynamics, using Koopman operator theory framework in this study we show that a linear second order model embedding, that captures the physics that occur inside a single or multi zone space does well when compared with data simulated using EnergyPlus. This class of models has low complexity. We show that their parameters have physical significance for the large-scale dynamics of a building and are correlated to concepts such as the thermal mass. We investigate consequences of changing the thermal mass on the energy behavior of a building system and provide best practice design suggestions.

Suggested Citation

  • Ljuboslav Boskic & Igor Mezic, 2021. "Control-Oriented, Data-Driven Models of Thermal Dynamics," Energies, MDPI, vol. 14(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1453-:d:512165
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1453/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1453/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antar, Mohamed A., 2010. "Thermal radiation role in conjugate heat transfer across a multiple-cavity building block," Energy, Elsevier, vol. 35(8), pages 3508-3516.
    2. Kuczyński, T. & Staszczuk, A., 2020. "Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings," Energy, Elsevier, vol. 195(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2011. "Passive heat and moisture removal from a natural vented enclosure with a massive wall," Energy, Elsevier, vol. 36(5), pages 2867-2882.
    2. Hawks, M.A. & Cho, S., 2024. "Review and analysis of current solutions and trends for zero energy building (ZEB) thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    4. Haibo Guo & Lu Huang & Wenjie Song & Xinyue Wang & Hongnan Wang & Xinning Zhao, 2020. "Evaluation of the Summer Overheating Phenomenon in Reinforced Concrete and Cross Laminated Timber Residential Buildings in the Cold and Severe Cold Regions of China," Energies, MDPI, vol. 13(23), pages 1-25, November.
    5. Xu, Bin & Chen, Xing-ni & Fei, Yue & Gan, Wen-tao & Pei, Gang, 2023. "Optimizing the applicability of cool paint through phase change material according to the energy consumption characteristics in different regions," Renewable Energy, Elsevier, vol. 212(C), pages 953-971.
    6. Xie, Xing & Chen, Xing-ni & Xu, Bin & Fei, Yue & Pei, Gang, 2022. "Study based on “Heat Flux - Energy Saving Pointer”: Exploring why phase change materials is not energy efficient enough on internal wall in cold region," Renewable Energy, Elsevier, vol. 196(C), pages 1308-1324.
    7. Anna Dudzińska & Tomasz Kisilewicz & Ewelina Panasiuk, 2023. "Impact of Material Solutions and a Passive Sports Hall’s Use on Thermal Comfort," Energies, MDPI, vol. 16(23), pages 1-28, November.
    8. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    9. Andrea Zambito & Giovanni Pernigotto & Simon Pezzutto & Andrea Gasparella, 2022. "Parametric Urban-Scale Analysis of Space Cooling Energy Needs and Potential Photovoltaic Integration in Residential Districts in South-West Europe," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    10. Maria Ferrara & Matteo Bilardo & Dragos-Ioan Bogatu & Doyun Lee & Mahmood Khatibi & Samira Rahnama & Jun Shinoda & Ying Sun & Yongjun Sun & Alireza Afshari & Fariborz Haghighat & Ongun B. Kazanci & Ry, 2024. "Review on Advanced Storage Control Applied to Optimized Operation of Energy Systems for Buildings and Districts: Insights and Perspectives," Energies, MDPI, vol. 17(14), pages 1-26, July.
    11. Mascherbauer, Philipp & Kranzl, Lukas & Yu, Songmin & Haupt, Thomas, 2022. "Investigating the impact of smart energy management system on the residential electricity consumption in Austria," Energy, Elsevier, vol. 249(C).
    12. Mascherbauer, Philipp & Kranzl, Lukas & Yu, Songmin & Haupt, Thomas, 2022. "Investigating the impact of smart energy management system on the residential electricity consumption in Austria," Working Papers "Sustainability and Innovation" S04/2022, Fraunhofer Institute for Systems and Innovation Research (ISI).
    13. Kočí, Václav & Kočí, Jan & Maděra, Jiří & Černý, Robert, 2016. "Contribution of waste products in single-layer ceramic building envelopes to overall energy savings," Energy, Elsevier, vol. 111(C), pages 947-955.
    14. Tsay, Y.L. & Cheng, J.C. & Hong, H.F. & Shih, Z.H., 2011. "Characteristics of heat dissipation from photovoltaic cells on the bottom wall of a horizontal cabinet to ambient natural convective air stream," Energy, Elsevier, vol. 36(7), pages 3959-3967.
    15. Maciej Dzikuć & Arkadiusz Piwowar & Szymon Szufa & Janusz Adamczyk & Maria Dzikuć, 2021. "Potential and Scenarios of Variants of Thermo-Modernization of Single-Family Houses: An Example of the Lubuskie Voivodeship," Energies, MDPI, vol. 14(1), pages 1-11, January.
    16. Kočí, Jan & Maděra, Jiří & Černý, Robert, 2015. "A fast computational approach for the determination of thermal properties of hollow bricks in energy-related calculations," Energy, Elsevier, vol. 83(C), pages 749-755.
    17. Chen, Xing-ni & Xu, Bin & Fei, Yue & Gan, Wen-tao & Pei, Gang, 2023. "Parameter optimization of phase change material and the combination of phase change material and cool paint according to corresponding energy consumption characteristics under various climates," Energy, Elsevier, vol. 277(C).
    18. Gupta, V. & Deb, C., 2023. "Envelope design for low-energy buildings in the tropics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    19. Robert C. Vella & Charles Yousif & Francisco Javier Rey Martinez & Javier María Rey Hernandez, 2022. "Prioritising Passive Measures over Air Conditioning to Achieve Thermal Comfort in Mediterranean Baroque Churches," Sustainability, MDPI, vol. 14(14), pages 1-23, July.
    20. Skiba, Marta & Mrówczyńska, Maria & Sztubecka, Małgorzata & Bazan-Krzywoszańska, Anna & Kazak, Jan K. & Leśniak, Agnieszka & Janowiec, Filip, 2021. "Probability estimation of the city’s energy efficiency improvement as a result of using the phase change materials in heating networks," Energy, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1453-:d:512165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.