IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v111y2016icp947-955.html
   My bibliography  Save this article

Contribution of waste products in single-layer ceramic building envelopes to overall energy savings

Author

Listed:
  • Kočí, Václav
  • Kočí, Jan
  • Maděra, Jiří
  • Černý, Robert

Abstract

The contribution of waste materials to the overall energy savings in buildings with single-layer ceramic envelopes is twofold. They can not only enhance the thermal properties of the brick blocks but also reduce the total energy necessary for the brick production. In this paper the contribution of waste products to the energy performance is demonstrated for a typical brick family house in the climatic conditions of Prague, Czech Republic. The energy calculations are conducted using Energy Plus with pre-calculated parameters given by the PHPP model. Specific computational modules for the calculation of effective thermal conductivity of brick blocks are utilized as integral parts of the energy performance calculation tool. Five different types of external walls are analyzed. They are made of solid clay bricks, sawdust-lightweighted solid clay bricks and a new type of highly perforated ceramic block with improved geometry which was developed recently by a Czech brick producer in three versions, having the cavities filled with air, waste polyurethane and mineral wool. The obtained results show that perforating the bricks, together with lightening their body and applying thermal insulating cavity fillers, can reduce the specific heating demands of the analyzed building up to 79.4%.

Suggested Citation

  • Kočí, Václav & Kočí, Jan & Maděra, Jiří & Černý, Robert, 2016. "Contribution of waste products in single-layer ceramic building envelopes to overall energy savings," Energy, Elsevier, vol. 111(C), pages 947-955.
  • Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:947-955
    DOI: 10.1016/j.energy.2016.06.061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216308350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antar, Mohamed A., 2010. "Thermal radiation role in conjugate heat transfer across a multiple-cavity building block," Energy, Elsevier, vol. 35(8), pages 3508-3516.
    2. Kočí, Jan & Maděra, Jiří & Černý, Robert, 2015. "A fast computational approach for the determination of thermal properties of hollow bricks in energy-related calculations," Energy, Elsevier, vol. 83(C), pages 749-755.
    3. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    4. Li, Jianhua & Cao, Wanlin & Chen, Guoxin, 2015. "The heat transfer coefficient of new construction – Brick masonry with fly ash blocks," Energy, Elsevier, vol. 86(C), pages 240-246.
    5. Soršak, Marko & Leskovar, Vesna Žegarac & Premrov, Miroslav & Goričanec, Darko & Pšunder, Igor, 2014. "Economical optimization of energy-efficient timber buildings: Case study for single family timber house in Slovenia," Energy, Elsevier, vol. 77(C), pages 57-65.
    6. Badescu, Viorel & Laaser, Nadine & Crutescu, Ruxandra, 2010. "Warm season cooling requirements for passive buildings in Southeastern Europe (Romania)," Energy, Elsevier, vol. 35(8), pages 3284-3300.
    7. Chwieduk, Dorota, 2003. "Towards sustainable-energy buildings," Applied Energy, Elsevier, vol. 76(1-3), pages 211-217, September.
    8. Rahman, Md. Saifur & Noman, Abu Hanifa Md. & Shahari, Farihana & Aslam, Mohamed & Gee, Chan Sok & Isa, Che Ruhana & Pervin, Sajeda, 2016. "Efficient energy consumption in industrial sectors and its effect on environment: A comparative analysis between G8 and Southeast Asian emerging economies," Energy, Elsevier, vol. 97(C), pages 82-89.
    9. Stephan, André & Crawford, Robert H. & de Myttenaere, Kristel, 2013. "A comprehensive assessment of the life cycle energy demand of passive houses," Applied Energy, Elsevier, vol. 112(C), pages 23-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin, Yuecheng & Robert, Dilan & Mohajerani, Abbas & Tran, Phuong & Pramanik, Biplob Kumar, 2023. "Energy efficiency of waste reformed fired clay bricks-from manufacturing to post application," Energy, Elsevier, vol. 282(C).
    2. Kyriakidis, A. & Michael, A. & Illampas, R. & Charmpis, D.C. & Ioannou, I., 2019. "Comparative evaluation of a novel environmentally responsive modular wall system based on integrated quantitative and qualitative criteria," Energy, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    2. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    3. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    4. Colclough, Shane & McGrath, Teresa, 2015. "Net energy analysis of a solar combi system with Seasonal Thermal Energy Store," Applied Energy, Elsevier, vol. 147(C), pages 611-616.
    5. Liu, Di & Zhao, Fu-Yun & Wang, Han-Qing, 2011. "Passive heat and moisture removal from a natural vented enclosure with a massive wall," Energy, Elsevier, vol. 36(5), pages 2867-2882.
    6. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    7. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    8. Hisham Alidrisi, 2021. "The Development of an Efficiency-Based Global Green Manufacturing Innovation Index: An Input-Oriented DEA Approach," Sustainability, MDPI, vol. 13(22), pages 1-11, November.
    9. Abd Alla, Sara & Bianco, Vincenzo & Tagliafico, Luca A. & Scarpa, Federico, 2020. "Life-cycle approach to the estimation of energy efficiency measures in the buildings sector," Applied Energy, Elsevier, vol. 264(C).
    10. Vincenzo Bianco & Annalisa Marchitto & Federico Scarpa & Luca A. Tagliafico, 2020. "Forecasting Energy Consumption in the EU Residential Sector," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    11. Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
    12. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    13. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    14. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    15. Meles, Tensay Hadush & Ryan, Lisa & Mukherjee, Sanghamitra C., 2022. "Heterogeneity in preferences for renewable home heating systems among Irish households," Applied Energy, Elsevier, vol. 307(C).
    16. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    17. Zhang, Shicong & Jiang, Yiqiang & Xu, Wei & Li, Huai & Yu, Zhen, 2016. "Operating performance in cooling mode of a ground source heat pump of a nearly-zero energy building in the cold region of China," Renewable Energy, Elsevier, vol. 87(P3), pages 1045-1052.
    18. Andrea Pianella & Lu Aye & Zhengdong Chen & Nicholas S. G. Williams, 2017. "Substrate Depth, Vegetation and Irrigation Affect Green Roof Thermal Performance in a Mediterranean Type Climate," Sustainability, MDPI, vol. 9(8), pages 1-19, August.
    19. Wu, Wei & Li, Xianting & You, Tian & Wang, Baolong & Shi, Wenxing, 2015. "Combining ground source absorption heat pump with ground source electrical heat pump for thermal balance, higher efficiency and better economy in cold regions," Renewable Energy, Elsevier, vol. 84(C), pages 74-88.
    20. Zhang, Chuan & Zhou, Li & Chhabra, Pulkit & Garud, Sushant S. & Aditya, Kevin & Romagnoli, Alessandro & Comodi, Gabriele & Dal Magro, Fabio & Meneghetti, Antonella & Kraft, Markus, 2016. "A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 184(C), pages 88-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:947-955. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.