A Long Short-Term Memory Neural Network for the Low-Cost Prediction of Soot Concentration in a Time-Dependent Flame
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mehdi Jadidi & Stevan Kostic & Leonardo Zimmer & Seth B. Dworkin, 2020. "An Artificial Neural Network for the Low-Cost Prediction of Soot Emissions," Energies, MDPI, vol. 13(18), pages 1-27, September.
- Yang, Guotian & Wang, Yingnan & Li, Xinli, 2020. "Prediction of the NOx emissions from thermal power plant using long-short term memory neural network," Energy, Elsevier, vol. 192(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Xinli & Wang, Yingnan & Zhu, Yun & Yang, Guotian & Liu, He, 2021. "Temperature prediction of combustion level of ultra-supercritical unit through data mining and modelling," Energy, Elsevier, vol. 231(C).
- Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
- Tuttle, Jacob F. & Blackburn, Landen D. & Andersson, Klas & Powell, Kody M., 2021. "A systematic comparison of machine learning methods for modeling of dynamic processes applied to combustion emission rate modeling," Applied Energy, Elsevier, vol. 292(C).
- Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
- Wen, Xiaoqiang & Li, Kaichuang & Wang, Jianguo, 2023. "NOx emission predicting for coal-fired boilers based on ensemble learning methods and optimized base learners," Energy, Elsevier, vol. 264(C).
- Kwak, Sanghyeok & Choi, Jaehong & Lee, Min Chul & Yoon, Youngbin, 2021. "Predicting instability frequency and amplitude using artificial neural network in a partially premixed combustor," Energy, Elsevier, vol. 230(C).
- Wang, Zhi & Peng, Xianyong & Zhou, Huaichun & Cao, Shengxian & Huang, Wenbo & Yan, Weijie & Li, Kuangyu & Fan, Siyuan, 2024. "A dynamic modeling method using channel-selection convolutional neural network: A case study of NOx emission," Energy, Elsevier, vol. 290(C).
- Yılmaz, Semih & Kumlutaş, Dilek & Yücekaya, Utku Alp & Cumbul, Ahmet Yakup, 2021. "Prediction of the equilibrium compositions in the combustion products of a domestic boiler," Energy, Elsevier, vol. 233(C).
- Wang, Zhihong & Luo, Kangwei & Yu, Hongsen & Feng, Kai & Ding, Hang, 2024. "NOx Emission prediction of heavy-duty diesel vehicles based on Bayesian optimization -Gated Recurrent Unit algorithm," Energy, Elsevier, vol. 292(C).
- Hou, Guolian & Gong, Linjuan & Hu, Bo & Su, Huilin & Huang, Ting & Huang, Congzhi & Fan, Wei & Zhao, Yuanzhu, 2022. "Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit," Energy, Elsevier, vol. 239(PA).
- Fan, Yuchen & Liu, Xin & Zhang, Chaoqun & Li, Chi & Li, Xinying & Wang, Heyang, 2024. "Dynamic prediction of boiler NOx emission with graph convolutional gated recurrent unit model optimized by genetic algorithm," Energy, Elsevier, vol. 294(C).
- Jia, Xiongjie & Sang, Yichen & Li, Yanjun & Du, Wei & Zhang, Guolei, 2022. "Short-term forecasting for supercharged boiler safety performance based on advanced data-driven modelling framework," Energy, Elsevier, vol. 239(PE).
- Mohsen Ayoobi & Pedro R. Resende & Alexandre M. Afonso, 2022. "Numerical Investigations of Combustion—An Overview," Energies, MDPI, vol. 15(9), pages 1-5, April.
- Jaroslaw Krzywanski, 2022. "Advanced AI Applications in Energy and Environmental Engineering Systems," Energies, MDPI, vol. 15(15), pages 1-3, August.
- Gao, Wei & Liu, Ming & Yin, Junjie & Zhao, Yongliang & Chen, Weixiong & Yan, Junjie, 2023. "An improved control strategy for a denitrification system using cooperative control of NH3 injection and flue gas temperature for coal-fired power plants," Energy, Elsevier, vol. 282(C).
- Dao, Fang & Zeng, Yun & Qian, Jing, 2024. "Fault diagnosis of hydro-turbine via the incorporation of bayesian algorithm optimized CNN-LSTM neural network," Energy, Elsevier, vol. 290(C).
- Marek Vochozka & Jaromir Vrbka & Petr Suler, 2020. "Bankruptcy or Success? The Effective Prediction of a Company’s Financial Development Using LSTM," Sustainability, MDPI, vol. 12(18), pages 1-17, September.
- Jiyuan Zhang & Qihong Feng & Xianmin Zhang & Qiujia Hu & Jiaosheng Yang & Ning Wang, 2020. "A Novel Data-Driven Method to Estimate Methane Adsorption Isotherm on Coals Using the Gradient Boosting Decision Tree: A Case Study in the Qinshui Basin, China," Energies, MDPI, vol. 13(20), pages 1-21, October.
- Nan Li & You Lv & Yong Hu, 2022. "Prediction of NOx Emissions from a Coal-Fired Boiler Based on Convolutional Neural Networks with a Channel Attention Mechanism," Energies, MDPI, vol. 16(1), pages 1-11, December.
- Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
More about this item
Keywords
soot concentration; estimator; neural network; LSTM; transient diffusion flame; computational fluid dynamics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1394-:d:509856. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.