IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1257-d505587.html
   My bibliography  Save this article

Identifying Challenges in Engaging Users to Increase Self-Consumption of Electricity in Microgrids

Author

Listed:
  • Fouad El Gohary

    (Department of Civil and Industrial Engineering, Uppsala University, Box 169, 751 04 Uppsala, Sweden)

  • Sofie Nyström

    (Department of Sustainable Development, Environmental Science and Engineering (SEED), KTH Royal Institute of Technology, Teknikringen 10 B, 100 44 Stockholm, Sweden)

  • Lizette Reitsma

    (Department of Culture and Society, Malmö University, 205 06 Malmö, Sweden)

  • Cajsa Bartusch

    (Department of Civil and Industrial Engineering, Uppsala University, Box 169, 751 04 Uppsala, Sweden)

Abstract

A microgrid’s self-consumption rate reflects its ability to retain its own energy and decrease its reliance on the synchronous grid. This paper investigates the empirical case of a microgrid equipped with photovoltaic (PV) panels and identifies challenges in engaging the microgrid’s users to increase their self-consumption. Accordingly, we explored both the physical and social dimensions of the microgrid. The former involved mapping the electricity consumption and production through an exploratory data analysis, and evaluating the associated price signals, while the latter involved the use of design interventions to explore users’ perceptions of the system. We highlight the problem of price signal impedance, the need for cost reflective pricing and the challenge in designing and extending internal price models in settings with various actors. We address the limitations of price signals, alongside alternative unidimensional signals, and emphasize the need for an integrated approach to a user engagement strategy as well as the challenges that this approach entails. Our results shed light on the complexity of energy communities such as microgrids, and why their implementation can introduce multidimensional challenges that demand cross-disciplinary approaches.

Suggested Citation

  • Fouad El Gohary & Sofie Nyström & Lizette Reitsma & Cajsa Bartusch, 2021. "Identifying Challenges in Engaging Users to Increase Self-Consumption of Electricity in Microgrids," Energies, MDPI, vol. 14(5), pages 1-27, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1257-:d:505587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1257/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1257/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hobman, Elizabeth V. & Frederiks, Elisha R. & Stenner, Karen & Meikle, Sarah, 2016. "Uptake and usage of cost-reflective electricity pricing: Insights from psychology and behavioural economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 455-467.
    2. Michelfelder, Richard A. & Pilotte, Eugene A., 2020. "Information in Electricity Forward Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(8), pages 2641-2664, December.
    3. Mengelkamp, Esther & Gärttner, Johannes & Rock, Kerstin & Kessler, Scott & Orsini, Lawrence & Weinhardt, Christof, 2018. "Designing microgrid energy markets," Applied Energy, Elsevier, vol. 210(C), pages 870-880.
    4. Gangale, Flavia & Mengolini, Anna & Onyeji, Ijeoma, 2013. "Consumer engagement: An insight from smart grid projects in Europe," Energy Policy, Elsevier, vol. 60(C), pages 621-628.
    5. Rieger, Alexander & Thummert, Robert & Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang, 2016. "Estimating the benefits of cooperation in a residential microgrid: A data-driven approach," Applied Energy, Elsevier, vol. 180(C), pages 130-141.
    6. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    7. Šćepanović, Sanja & Warnier, Martijn & Nurminen, Jukka K., 2017. "The role of context in residential energy interventions: A meta review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1146-1168.
    8. Tjørring, Lise & Jensen, Carsten Lynge & Hansen, Lars Gårn & Andersen, Laura Mørch, 2018. "Increasing the flexibility of electricity consumption in private households: Does gender matter?," Energy Policy, Elsevier, vol. 118(C), pages 9-18.
    9. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2010. "Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors," Energy Policy, Elsevier, vol. 38(10), pages 6111-6119, October.
    10. Sardianou, E. & Genoudi, P., 2013. "Which factors affect the willingness of consumers to adopt renewable energies?," Renewable Energy, Elsevier, vol. 57(C), pages 1-4.
    11. Klein, Martin & Ziade, Ahmad & de Vries, Laurens, 2019. "Aligning prosumers with the electricity wholesale market – The impact of time-varying price signals and fixed network charges on solar self-consumption," Energy Policy, Elsevier, vol. 134(C).
    12. Cornélusse, Bertrand & Savelli, Iacopo & Paoletti, Simone & Giannitrapani, Antonio & Vicino, Antonio, 2019. "A community microgrid architecture with an internal local market," Applied Energy, Elsevier, vol. 242(C), pages 547-560.
    13. Kim, Jin-Ho & Shcherbakova, Anastasia, 2011. "Common failures of demand response," Energy, Elsevier, vol. 36(2), pages 873-880.
    14. Buryk, Stephen & Mead, Doug & Mourato, Susana & Torriti, Jacopo, 2015. "Investigating preferences for dynamic electricity tariffs: The effect of environmental and system benefit disclosure," Energy Policy, Elsevier, vol. 80(C), pages 190-195.
    15. Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
    16. Hanna Mela & Juha Peltomaa & Marja Salo & Kirsi Mäkinen & Mikael Hildén, 2018. "Framing Smart Meter Feedback in Relation to Practice Theory," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    17. Patrick Balducci & Kendall Mongird & Di Wu & Dexin Wang & Vanshika Fotedar & Robert Dahowski, 2020. "An Evaluation of the Economic and Resilience Benefits of a Microgrid in Northampton, Massachusetts," Energies, MDPI, vol. 13(18), pages 1-28, September.
    18. Shin, Jeong-Shik, 1985. "Perception of Price When Price Information Is Costly: Evidence from Residential Electricity Demand," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 591-598, November.
    19. Robin Smale & Sanneke Kloppenburg, 2020. "Platforms in Power: Householder Perspectives on the Social, Environmental and Economic Challenges of Energy Platforms," Sustainability, MDPI, vol. 12(2), pages 1-16, January.
    20. Delmas, Magali A. & Fischlein, Miriam & Asensio, Omar I., 2013. "Information strategies and energy conservation behavior: A meta-analysis of experimental studies from 1975 to 2012," Energy Policy, Elsevier, vol. 61(C), pages 729-739.
    21. Bertrand Corn'elusse & Iacopo Savelli & Simone Paoletti & Antonio Giannitrapani & Antonio Vicino, 2018. "A Community Microgrid Architecture with an Internal Local Market," Papers 1810.09803, arXiv.org, revised Feb 2019.
    22. Buckley, Penelope, 2020. "Prices, information and nudges for residential electricity conservation: A meta-analysis," Ecological Economics, Elsevier, vol. 172(C).
    23. Parrish, Bryony & Heptonstall, Phil & Gross, Rob & Sovacool, Benjamin K., 2020. "A systematic review of motivations, enablers and barriers for consumer engagement with residential demand response," Energy Policy, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Alexandre Mayol & Carine Staropoli, 2021. "Giving consumers too many choices: a false good idea? A lab experiment on water and electricity tariffs," European Journal of Law and Economics, Springer, vol. 51(2), pages 383-410, April.
    3. Hofmann, Matthias & Lindberg, Karen Byskov, 2024. "Evidence of households' demand flexibility in response to variable hourly electricity prices – Results from a comprehensive field experiment in Norway," Energy Policy, Elsevier, vol. 184(C).
    4. Agarwal, Sumit & Sing, Tien Foo & Sultana, Mahanaaz, 2022. "Public media campaign and energy conservation: A natural experiment in Singapore," Energy Economics, Elsevier, vol. 114(C).
    5. Sloot, Daniel & Scheibehenne, Benjamin, 2022. "Understanding the financial incentive conundrum: A meta-analysis of the effectiveness of financial incentive interventions in promoting energy conservation behavior," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    7. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    8. Gayo-Abeleira, Miguel & Santos, Carlos & Javier Rodríguez Sánchez, Francisco & Martín, Pedro & Antonio Jiménez, José & Santiso, Enrique, 2022. "Aperiodic two-layer energy management system for community microgrids based on blockchain strategy," Applied Energy, Elsevier, vol. 324(C).
    9. Adélaïde Fadhuile & Daniel Llerena & Béatrice Roussillon, 2023. "Intrinsic Motivation to Promote the Development of Renewable Energy : A Field Experiment from Household Demand," Working Papers hal-03977597, HAL.
    10. Christian Cordes & Joshua Henkel, 2022. "Enhanced "Green Nudging": Tapping the Channels of Cultural Transmission," Bremen Papers on Economics & Innovation 2208, University of Bremen, Faculty of Business Studies and Economics.
    11. Matthew Gough & Sérgio F. Santos & Mohammed Javadi & Rui Castro & João P. S. Catalão, 2020. "Prosumer Flexibility: A Comprehensive State-of-the-Art Review and Scientometric Analysis," Energies, MDPI, vol. 13(11), pages 1-32, May.
    12. Andor, Mark A. & Gerster, Andreas & Peters, Jörg, 2022. "Information campaigns for residential energy conservation," European Economic Review, Elsevier, vol. 144(C).
    13. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & José Matas, 2021. "Individual vs. Community: Economic Assessment of Energy Management Systems under Different Regulatory Frameworks," Energies, MDPI, vol. 14(3), pages 1-27, January.
    14. Alexandros-Georgios Chronis & Foivos Palaiogiannis & Iasonas Kouveliotis-Lysikatos & Panos Kotsampopoulos & Nikos Hatziargyriou, 2021. "Photovoltaics Enabling Sustainable Energy Communities: Technological Drivers and Emerging Markets," Energies, MDPI, vol. 14(7), pages 1-21, March.
    15. Wenting Zhao & Jun Lv & Xilong Yao & Juanjuan Zhao & Zhixin Jin & Yan Qiang & Zheng Che & Chunwu Wei, 2019. "Consortium Blockchain-Based Microgrid Market Transaction Research," Energies, MDPI, vol. 12(20), pages 1-22, October.
    16. Hackbarth, André, 2018. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Reutlingen Working Papers on Marketing & Management 2019-2, Reutlingen University, ESB Business School.
    17. Rodrigues, Daniel L. & Ye, Xianming & Xia, Xiaohua & Zhu, Bing, 2020. "Battery energy storage sizing optimisation for different ownership structures in a peer-to-peer energy sharing community," Applied Energy, Elsevier, vol. 262(C).
    18. Kowalska-Pyzalska, Anna, 2018. "What makes consumers adopt to innovative energy services in the energy market? A review of incentives and barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3570-3581.
    19. Iacopo Savelli & Thomas Morstyn, 2020. "Electricity prices and tariffs to keep everyone happy: a framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Papers 2001.04283, arXiv.org, revised Jun 2021.
    20. Hackbarth, André & Löbbe, Sabine, 2020. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Energy Policy, Elsevier, vol. 138(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1257-:d:505587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.