IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4802-d413415.html
   My bibliography  Save this article

An Evaluation of the Economic and Resilience Benefits of a Microgrid in Northampton, Massachusetts

Author

Listed:
  • Patrick Balducci

    (Pacific Northwest National Laboratory (PNNL), Portland, OR 97204, USA)

  • Kendall Mongird

    (Pacific Northwest National Laboratory (PNNL), Portland, OR 97204, USA)

  • Di Wu

    (Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA)

  • Dexin Wang

    (Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA)

  • Vanshika Fotedar

    (Pacific Northwest National Laboratory (PNNL), Portland, OR 97204, USA)

  • Robert Dahowski

    (Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, USA)

Abstract

Recent developments and advances in distributed energy resource (DER) technologies make them valuable assets in microgrids. This paper presents an innovative evaluation framework for microgrid assets to capture economic benefits from various grid and behind-the-meter services in grid-connecting mode and resilience benefits in islanding mode. In particular, a linear programming formulation is used to model different services and DER operational constraints to determine the optimal DER dispatch to maximize economic benefits. For the resiliency analysis, a stochastic evaluation procedure is proposed to explicitly quantify the microgrid survivability against a random outage, considering uncertainties associated with photovoltaic (PV) generation, system load, and distributed generator failures. Optimal coordination strategies are developed to minimize unserved energy and improve system survivability, considering different levels of system connectedness. The proposed framework has been applied to evaluate a proposed microgrid in Northampton, Massachusetts that would link the Northampton Department of Public Works, Cooley Dickenson Hospital, and Smith Vocational Area High School. The findings of this analysis indicate that over a 20-year economic life, a 441 kW/441 kWh battery energy storage system, and 386 kW PV solar array can generate $2.5 million in present value benefits, yielding a 1.16 return on investment ratio. Results of this study also show that forming a microgrid generally improves system survivability, but the resilience performance of individual facilities varies depending on power-sharing strategies.

Suggested Citation

  • Patrick Balducci & Kendall Mongird & Di Wu & Dexin Wang & Vanshika Fotedar & Robert Dahowski, 2020. "An Evaluation of the Economic and Resilience Benefits of a Microgrid in Northampton, Massachusetts," Energies, MDPI, vol. 13(18), pages 1-28, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4802-:d:413415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4802/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4802/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rosales-Asensio, Enrique & de Simón-Martín, Miguel & Borge-Diez, David & Blanes-Peiró, Jorge Juan & Colmenar-Santos, Antonio, 2019. "Microgrids with energy storage systems as a means to increase power resilience: An application to office buildings," Energy, Elsevier, vol. 172(C), pages 1005-1015.
    2. Bahramara, Salah & Sheikhahmadi, Pouria & Golpîra, Hêmin, 2019. "Co-optimization of energy and reserve in standalone micro-grid considering uncertainties," Energy, Elsevier, vol. 176(C), pages 792-804.
    3. Laws, Nicholas D. & Anderson, Kate & DiOrio, Nicholas A. & Li, Xiangkun & McLaren, Joyce, 2018. "Impacts of valuing resilience on cost-optimal PV and storage systems for commercial buildings," Renewable Energy, Elsevier, vol. 127(C), pages 896-909.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristian Hoyos-Velandia & Lina Ramirez-Hurtado & Jaime Quintero-Restrepo & Ricardo Moreno-Chuquen & Francisco Gonzalez-Longatt, 2022. "Cost Functions for Generation Dispatching in Microgrids for Non-Interconnected Zones in Colombia," Energies, MDPI, vol. 15(7), pages 1-14, March.
    2. Fouad El Gohary & Sofie Nyström & Lizette Reitsma & Cajsa Bartusch, 2021. "Identifying Challenges in Engaging Users to Increase Self-Consumption of Electricity in Microgrids," Energies, MDPI, vol. 14(5), pages 1-27, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Di & Ma, Xu & Huang, Sen & Fu, Tao & Balducci, Patrick, 2020. "Stochastic optimal sizing of distributed energy resources for a cost-effective and resilient Microgrid," Energy, Elsevier, vol. 198(C).
    2. Chowdhury, Tamal & Chowdhury, Hemal & Islam, Kazi Sifatul & Sharifi, Ayyoob & Corkish, Richard & Sait, Sadiq M., 2023. "Resilience analysis of a PV/battery system of health care centres in Rohingya refugee camp," Energy, Elsevier, vol. 263(PA).
    3. Hervás-Zaragoza, Josep & Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Colmenar-Fernández, Lucía, 2022. "Microgrids as a mechanism for improving energy resilience during grid outages: A post COVID-19 case study for hospitals," Renewable Energy, Elsevier, vol. 199(C), pages 308-319.
    4. Kazi Sifatul Islam & Samiul Hasan & Tamal Chowdhury & Hemal Chowdhury & Sadiq M. Sait, 2022. "Outage Survivability Investigation of a PV/Battery/CHP System in a Hospital Building in Texas," Sustainability, MDPI, vol. 14(22), pages 1-14, November.
    5. Sepúlveda-Mora, Sergio B. & Hegedus, Steven, 2022. "Resilience analysis of renewable microgrids for commercial buildings with different usage patterns and weather conditions," Renewable Energy, Elsevier, vol. 192(C), pages 731-744.
    6. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    7. Asfand Yar Ali & Akhtar Hussain & Ju-Won Baek & Hak-Man Kim, 2020. "Optimal Operation of Networked Microgrids for Enhancing Resilience Using Mobile Electric Vehicles," Energies, MDPI, vol. 14(1), pages 1-20, December.
    8. Ray, Manojit & Chakraborty, Basab, 2022. "Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements," Renewable Energy, Elsevier, vol. 193(C), pages 895-912.
    9. S M Mezbahul Amin & Abul Hasnat & Nazia Hossain, 2023. "Designing and Analysing a PV/Battery System via New Resilience Indicators," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    10. Borge-Diez, David & Icaza, Daniel & Açıkkalp, Emin & Amaris, Hortensia, 2021. "Combined vehicle to building (V2B) and vehicle to home (V2H) strategy to increase electric vehicle market share," Energy, Elsevier, vol. 237(C).
    11. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2021. "Energy equipment sizing and operation optimisation for prosumer industrial SMEs – A lifetime approach," Applied Energy, Elsevier, vol. 299(C).
    12. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Coordination of vehicle-to-home and renewable capacity resources for energy management in resilience and self-healing building," Renewable Energy, Elsevier, vol. 146(C), pages 568-579.
    13. To, Thanh & Heleno, Miguel & Valenzuela, Alan, 2022. "Risk-constrained multi-period investment model for Distributed Energy Resources considering technology costs and regulatory uncertainties," Applied Energy, Elsevier, vol. 319(C).
    14. S. Ananda Kumar & M. S. P. Subathra & Nallapaneni Manoj Kumar & Maria Malvoni & N. J. Sairamya & S. Thomas George & Easter S. Suviseshamuthu & Shauhrat S. Chopra, 2020. "A Novel Islanding Detection Technique for a Resilient Photovoltaic-Based Distributed Power Generation System Using a Tunable-Q Wavelet Transform and an Artificial Neural Network," Energies, MDPI, vol. 13(16), pages 1-22, August.
    15. Kang, Hyuna & Jung, Seunghoon & Kim, Hakpyeong & Jeoung, Jaewon & Hong, Taehoon, 2024. "Reinforcement learning-based optimal scheduling model of battery energy storage system at the building level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    16. Gorman, Will & Barbose, Galen & Pablo Carvallo, Juan & Baik, Sunhee & Miller, Chandler & White, Philip & Praprost, Marlena, 2023. "County-level assessment of behind-the-meter solar and storage to mitigate long duration power interruptions for residential customers," Applied Energy, Elsevier, vol. 342(C).
    17. Mirzaei, Mohammad Amin & Sadeghi-Yazdankhah, Ahmad & Mohammadi-Ivatloo, Behnam & Marzband, Mousa & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products," Energy, Elsevier, vol. 189(C).
    18. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    19. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    20. Swaminathan, Siddharth & Pavlak, Gregory S. & Freihaut, James, 2020. "Sizing and dispatch of an islanded microgrid with energy flexible buildings," Applied Energy, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4802-:d:413415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.