IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1433-d750694.html
   My bibliography  Save this article

A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle—Part One: Wastes and Environmental Impacts

Author

Listed:
  • Robin Taylor

    (National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale CA20 1PG, UK)

  • William Bodel

    (Dalton Nuclear Institute, The University of Manchester, Manchester M13 9PL, UK)

  • Laurence Stamford

    (Department of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M13 9PL, UK)

  • Gregg Butler

    (Dalton Nuclear Institute, The University of Manchester, Manchester M13 9PL, UK)

Abstract

Globally, around half a million tonnes of spent nuclear fuel (SNF) will be in dry or wet storage by around 2050. Continued storage is not sustainable, and this SNF must eventually either be disposed (the open nuclear fuel cycle) or recycled (the closed fuel cycle). Many international studies have addressed the advantages and disadvantages of these options. To inform this debate, a detailed survey of the available literature related to environmental assessments of closed and open cycles has been undertaken. Environmental impacts are one of the three pillars that, alongside economic and societal impacts, must be considered for sustainable development. The aims are to provide a critical review of the open literature in order to determine what generic conclusions can be drawn from the broad base of international studies. This review covers the results of life cycle assessments and studies on waste arisings, showing how the management of spent fuels in the open and closed cycles impact the environment, including the use of natural resources, radioactive waste characteristics (heat loading, radiotoxicity and volume) and the size of the geological repository. In the framework of sustainable development, the next part of this review will consider economic impacts.

Suggested Citation

  • Robin Taylor & William Bodel & Laurence Stamford & Gregg Butler, 2022. "A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle—Part One: Wastes and Environmental Impacts," Energies, MDPI, vol. 15(4), pages 1-35, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1433-:d:750694
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ethan S. Warner & Garvin A. Heath, 2012. "Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 73-92, April.
    2. Stamford, Laurence & Azapagic, Adisa, 2011. "Sustainability indicators for the assessment of nuclear power," Energy, Elsevier, vol. 36(10), pages 6037-6057.
    3. Dungan, K. & Gregg, R.W.H. & Morris, K. & Livens, F.R. & Butler, G., 2021. "Assessment of the disposability of radioactive waste inventories for a range of nuclear fuel cycles: Inventory and evolution over time," Energy, Elsevier, vol. 221(C).
    4. Park, Byung Heung & Gao, Fanxing & Kwon, Eun-ha & Ko, Won Il, 2011. "Comparative study of different nuclear fuel cycle options: Quantitative analysis on material flow," Energy Policy, Elsevier, vol. 39(11), pages 6916-6924.
    5. Sovacool, Benjamin K., 2008. "Valuing the greenhouse gas emissions from nuclear power: A critical survey," Energy Policy, Elsevier, vol. 36(8), pages 2940-2953, August.
    6. John J. Burkhardt & Garvin Heath & Elliot Cohen, 2012. "Life Cycle Greenhouse Gas Emissions of Trough and Tower Concentrating Solar Power Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 93-109, April.
    7. Hyatt, Neil C., 2017. "Plutonium management policy in the United Kingdom: The need for a dual track strategy," Energy Policy, Elsevier, vol. 101(C), pages 303-309.
    8. William Bodel & Kevin Hesketh & Grace McGlynn & Juan Matthews & Gregg Butler, 2021. "Generic Feasibility Assessment: Helping to Choose the Nuclear Piece of the Net Zero Jigsaw," Energies, MDPI, vol. 14(5), pages 1-17, February.
    9. Poinssot, Ch. & Bourg, S. & Ouvrier, N. & Combernoux, N. & Rostaing, C. & Vargas-Gonzalez, M. & Bruno, J., 2014. "Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles," Energy, Elsevier, vol. 69(C), pages 199-211.
    10. Jérôme Serp & Christophe Poinssot & Stéphane Bourg, 2017. "Assessment of the Anticipated Environmental Footprint of Future Nuclear Energy Systems. Evidence of the Beneficial Effect of Extensive Recycling," Energies, MDPI, vol. 10(9), pages 1-19, September.
    11. Michael Whitaker & Garvin A. Heath & Patrick O’Donoughue & Martin Vorum, 2012. "Life Cycle Greenhouse Gas Emissions of Coal‐Fired Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 53-72, April.
    12. David D. Hsu & Patrick O’Donoughue & Vasilis Fthenakis & Garvin A. Heath & Hyung Chul Kim & Pamala Sawyer & Jun‐Ki Choi & Damon E. Turney, 2012. "Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 122-135, April.
    13. Alexandra Witze, 2014. "Nuclear power: Desperately seeking plutonium," Nature, Nature, vol. 515(7528), pages 484-486, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alistair F. Holdsworth & Harry Eccles & Clint A. Sharrad & Kathryn George, 2023. "Spent Nuclear Fuel—Waste or Resource? The Potential of Strategic Materials Recovery during Recycle for Sustainability and Advanced Waste Management," Waste, MDPI, vol. 1(1), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robin Taylor & William Bodel & Gregg Butler, 2022. "A Review of Environmental and Economic Implications of Closing the Nuclear Fuel Cycle—Part Two: Economic Impacts," Energies, MDPI, vol. 15(7), pages 1-31, March.
    2. Piotr Bórawski & Aneta Bełdycka-Bórawska & Bogdan Klepacki & Lisa Holden & Tomasz Rokicki & Andrzej Parzonko, 2024. "Changes in Gross Nuclear Electricity Production in the European Union," Energies, MDPI, vol. 17(14), pages 1-31, July.
    3. Jiang, Junxia & Gao, Xiaoqing & Lv, Qingquan & Li, Zhenchao & Li, Peidu, 2021. "Observed impacts of utility-scale photovoltaic plant on local air temperature and energy partitioning in the barren areas," Renewable Energy, Elsevier, vol. 174(C), pages 157-169.
    4. Pomponi, Francesco & Hart, Jim, 2021. "The greenhouse gas emissions of nuclear energy – Life cycle assessment of a European pressurised reactor," Applied Energy, Elsevier, vol. 290(C).
    5. Gamarra, A.R. & Banacloche, S. & Lechon, Y. & del Río, P., 2023. "Assessing the sustainability impacts of concentrated solar power deployment in Europe in the context of global value chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    6. Richard Wallsgrove & Jisuk Woo & Jae-Hyup Lee & Lorraine Akiba, 2021. "The Emerging Potential of Microgrids in the Transition to 100% Renewable Energy Systems," Energies, MDPI, vol. 14(6), pages 1-28, March.
    7. Elshkaki, Ayman & Shen, Lei, 2019. "Energy-material nexus: The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications," Energy, Elsevier, vol. 180(C), pages 903-917.
    8. Roberts, M.B. & Bruce, A. & MacGill, I., 2019. "Opportunities and barriers for photovoltaics on multi-unit residential buildings: Reviewing the Australian experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 95-110.
    9. Atif Ali & Theodore W. Koch & Timothy A. Volk & Robert W. Malmsheimer & Mark H. Eisenbies & Danielle Kloster & Tristan R. Brown & Nehan Naim & Obste Therasme, 2022. "The Environmental Life Cycle Assessment of Electricity Production in New York State from Distributed Solar Photovoltaic Systems," Energies, MDPI, vol. 15(19), pages 1-20, October.
    10. Steffi Weyand & Carolin Wittich & Liselotte Schebek, 2019. "Environmental Performance of Emerging Photovoltaic Technologies: Assessment of the Status Quo and Future Prospects Based on a Meta-Analysis of Life-Cycle Assessment Studies," Energies, MDPI, vol. 12(22), pages 1-25, November.
    11. Lunardi, Marina M. & Needell, David R. & Bauser, Haley & Phelan, Megan & Atwater, Harry A. & Corkish, Richard, 2019. "Life Cycle Assessment of tandem LSC-Si devices," Energy, Elsevier, vol. 181(C), pages 1-10.
    12. Quyen Le Luu & Sonia Longo & Maurizio Cellura & Eleonora Riva Sanseverino & Maria Anna Cusenza & Vincenzo Franzitta, 2020. "A Conceptual Review on Using Consequential Life Cycle Assessment Methodology for the Energy Sector," Energies, MDPI, vol. 13(12), pages 1-19, June.
    13. Harjanne, Atte & Korhonen, Janne M., 2019. "Abandoning the concept of renewable energy," Energy Policy, Elsevier, vol. 127(C), pages 330-340.
    14. Elshkaki, Ayman & Graedel, T.E., 2015. "Solar cell metals and their hosts: A tale of oversupply and undersupply," Applied Energy, Elsevier, vol. 158(C), pages 167-177.
    15. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    16. Wang, An & Tu, Ran & Gai, Yijun & Pereira, Lucas G. & Vaughan, J. & Posen, I. Daniel & Miller, Eric J. & Hatzopoulou, Marianne, 2020. "Capturing uncertainty in emission estimates related to vehicle electrification and implications for metropolitan greenhouse gas emission inventories," Applied Energy, Elsevier, vol. 265(C).
    17. Timo Busch & Matthew Johnson & Thomas Pioch, 2022. "Corporate carbon performance data: Quo vadis?," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 350-363, February.
    18. Tran, Thomas T.D. & Smith, Amanda D., 2018. "Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies," Applied Energy, Elsevier, vol. 216(C), pages 157-171.
    19. Roggenburg, Michael & Warsinger, David M. & Bocanegra Evans, Humberto & Castillo, Luciano, 2021. "Combatting water scarcity and economic distress along the US-Mexico border using renewable powered desalination," Applied Energy, Elsevier, vol. 291(C).
    20. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1433-:d:750694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.