IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p873-d495328.html
   My bibliography  Save this article

Analysis of the Ignition Behavior Based on Similarity Factor Method

Author

Listed:
  • Weiwei Fan

    (Henan Institute of Technology, Xinxiang 453003, China)

  • Shengxiong Yang

    (Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511400, China)

  • Ke Xu

    (Henan Institute of Technology, Xinxiang 453003, China)

  • Mingdong Zhu

    (Henan Institute of Technology, Xinxiang 453003, China)

  • Jie Xu

    (Henan Institute of Technology, Xinxiang 453003, China)

Abstract

The chemical kinetics mechanism is an important factor to accurately predict the combustion characteristics of constant-volume bomb (CVB). In this study, an n-heptane oxidation mechanism constructed by Wang et al. is introduced to study the correlation of the ignition behaviors with the mechanism constructed by Chang et al. The effects of the similarity factor method in the analysis of ignition behaviors of fuel in CVB were repeatedly verified by changing the important spraying parameters: injection pressure and hole diameter. Through further verification, it was found that the combustion process was controlled at approximately 850 K and stoichiometric ratio mixture of fuel/air in CVB, which corresponds to the negative temperature coefficient region at stoichiometric ratio mixture in shock tube (ST). The mechanism verified by the experiment under the condition in ST can reflect the chemical ignition in CVB. In addition, the similarity factor method was less dependent on the chemical reaction mechanism and boundary conditions.

Suggested Citation

  • Weiwei Fan & Shengxiong Yang & Ke Xu & Mingdong Zhu & Jie Xu, 2021. "Analysis of the Ignition Behavior Based on Similarity Factor Method," Energies, MDPI, vol. 14(4), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:873-:d:495328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/873/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/873/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javier Monsalve-Serrano & Giacomo Belgiorno & Gabriele Di Blasio & María Guzmán-Mendoza, 2020. "1D Simulation and Experimental Analysis on the Effects of the Injection Parameters in Methane–Diesel Dual-Fuel Combustion," Energies, MDPI, vol. 13(14), pages 1-13, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arkadiusz Jamrozik & Wojciech Tutak & Karol Grab-Rogaliński, 2021. "Combustion Stability, Performance and Emission Characteristics of a CI Engine Fueled with Diesel/n-Butanol Blends," Energies, MDPI, vol. 14(10), pages 1-20, May.
    2. Marco Puglia & Nicolò Morselli & Simone Pedrazzi & Paolo Tartarini & Giulio Allesina & Alberto Muscio, 2021. "Specific and Cumulative Exhaust Gas Emissions in Micro-Scale Generators Fueled by Syngas from Biomass Gasification," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    3. Adhirath Mandal & Haengmuk Cho & Bhupendra Singh Chauhan, 2021. "ANN Prediction of Performance and Emissions of CI Engine Using Biogas Flow Variation," Energies, MDPI, vol. 14(10), pages 1-18, May.
    4. K. M. V. Ravi Teja & P. Issac Prasad & K. Vijaya Kumar Reddy & N. R. Banapurmath & Manzoore Elahi M. Soudagar & Nazia Hossain & Asif Afzal & C Ahamed Saleel, 2021. "Comparative Analysis of Performance, Emission, and Combustion Characteristics of a Common Rail Direct Injection Diesel Engine Powered with Three Different Biodiesel Blends," Energies, MDPI, vol. 14(18), pages 1-19, September.
    5. Ming-Hsien Hsueh & Chao-Jung Lai & Meng-Chang Hsieh & Shi-Hao Wang & Chia-Hsin Hsieh & Chieh-Yu Pan & Wen-Chen Huang, 2021. "Effect of Water Vapor Injection on the Performance and Emissions Characteristics of a Spark-Ignition Engine," Sustainability, MDPI, vol. 13(16), pages 1-22, August.
    6. Jerzy Cisek & Szymon Leśniak & Andrzej Borowski & Włodzimierz Przybylski & Vitaliy Mokretskyy, 2022. "Visualisation and Thermovision of Fuel Combustion Affecting Heat Release to Reduce NO x and PM Diesel Engine Emissions," Energies, MDPI, vol. 15(13), pages 1-32, July.
    7. Vinodkumar, V. & Karthikeyan, A., 2022. "Effect of manifold injection of n-decanol on neem biodiesel fuelled CI engine," Energy, Elsevier, vol. 241(C).
    8. Keerthi Kumar N. & N. R. Banapurmath & T. K. Chandrashekar & Jatadhara G. S. & Manzoore Elahi M. Soudagar & Ali E. Anqi & M. A. Mujtaba & Marjan Goodarzi & Ashraf Elfasakhany & Md Irfanul Haque Siddiq, 2021. "Effect of Parameters Behavior of Simarouba Methyl Ester Operated Diesel Engine," Energies, MDPI, vol. 14(16), pages 1-18, August.
    9. Ali Qasemian & Sina Jenabi Haghparast & Pouria Azarikhah & Meisam Babaie, 2021. "Effects of Compression Ratio of Bio-Fueled SI Engines on the Thermal Balance and Waste Heat Recovery Potential," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    10. Simón Martínez-Martínez & Oscar A. de la Garza & Miguel García-Yera & Ricardo Martínez-Carrillo & Fausto A. Sánchez-Cruz, 2021. "Hydraulic Interactions between Injection Events Using Multiple Injection Strategies and a Solenoid Diesel Injector," Energies, MDPI, vol. 14(11), pages 1-11, May.
    11. Jerzy Cisek & Szymon Lesniak & Winicjusz Stanik & Włodzimierz Przybylski, 2021. "The Synergy of Two Biofuel Additives on Combustion Process to Simultaneously Reduce NOx and PM Emissions," Energies, MDPI, vol. 14(10), pages 1-31, May.
    12. Yanyan Zhang & Ziyuan Ma & Yan Feng & Ziyu Diao & Zhentao Liu, 2021. "The Effects of Ultra-Low Viscosity Engine Oil on Mechanical Efficiency and Fuel Economy," Energies, MDPI, vol. 14(8), pages 1-20, April.
    13. Zandie, Mohammad & Ng, Hoon Kiat & Muhamad Said, Mohd Farid & Cheng, Xinwei & Gan, Suyin, 2023. "Performance of a compression ignition engine fuelled with diesel-palm biodiesel-gasoline mixtures: CFD and multi parameter optimisation studies," Energy, Elsevier, vol. 274(C).
    14. Fukang Ma & Wei Yang & Junfeng Xu & Yufeng Li & Zhenfeng Zhao & Zhenyu Zhang & Yifang Wang, 2021. "Experimental Investigation of Combustion Characteristics on Opposed Piston Two-Stroke Gasoline Direct Injection Engine," Energies, MDPI, vol. 14(8), pages 1-23, April.
    15. Weronika Gracz & Damian Marcinkowski & Wojciech Golimowski & Filip Szwajca & Maria Strzelczyk & Jacek Wasilewski & Paweł Krzaczek, 2021. "Multifaceted Comparison Efficiency and Emission Characteristics of Multi-Fuel Power Generator Fueled by Different Fuels and Biofuels," Energies, MDPI, vol. 14(12), pages 1-19, June.
    16. Jesus M. Padilla-Atondo & Jorge Limon-Romero & Armando Perez-Sanchez & Diego Tlapa & Yolanda Baez-Lopez & Cesar Puente & Sinue Ontiveros, 2021. "The Impact of Hydrogen on a Stationary Gasoline-Based Engine through Multi-Response Optimization: A Desirability Function Approach," Sustainability, MDPI, vol. 13(3), pages 1-18, January.
    17. María D. Redel-Macías & David E. Leiva-Candia & José A. Soriano & José M. Herreros & Antonio J. Cubero-Atienza & Sara Pinzi, 2021. "Influence of Short Carbon-Chain Alcohol (Ethanol and 1-Propanol)/Diesel Fuel Blends over Diesel Engine Emissions," Energies, MDPI, vol. 14(5), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:873-:d:495328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.