Serum metabolome associated with severity of acute traumatic brain injury
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-022-30227-5
Download full text from publisher
References listed on IDEAS
- Archer, Kellie J. & Kimes, Ryan V., 2008. "Empirical characterization of random forest variable importance measures," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2249-2260, January.
- John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
- Binh Thai Pham & Chongchong Qi & Lanh Si Ho & Trung Nguyen-Thoi & Nadhir Al-Ansari & Manh Duc Nguyen & Huu Duy Nguyen & Hai-Bang Ly & Hiep Van Le & Indra Prakash, 2020. "A Novel Hybrid Soft Computing Model Using Random Forest and Particle Swarm Optimization for Estimation of Undrained Shear Strength of Soil," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
- Bajgrowicz, Pierre & Scaillet, Olivier, 2012.
"Technical trading revisited: False discoveries, persistence tests, and transaction costs,"
Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
- Pierre Bajgrowicz & Olivier Scaillet, 2008. "Technical Trading Revisited: False Discoveries, Persistence Tests, and Transaction Costs," Swiss Finance Institute Research Paper Series 08-05, Swiss Finance Institute, revised Jul 2009.
- Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
- Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.
- Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
- A Bottle & P Aylin, 2011. "Predicting the false alarm rate in multi-institution mortality monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1711-1718, September.
- Van Hanh Nguyen & Catherine Matias, 2014. "On Efficient Estimators of the Proportion of True Null Hypotheses in a Multiple Testing Setup," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1167-1194, December.
- Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
- Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.
- Ebrahimi, Nader, 2008. "Simultaneous control of false positives and false negatives in multiple hypotheses testing," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 437-450, March.
- B. Moerkerke & E. Goetghebeur & J. De Riek & I. Roldán‐Ruiz, 2006. "Significance and impotence: towards a balanced view of the null and the alternative hypotheses in marker selection for plant breeding," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 61-79, January.
- Zaili Fang & Inyoung Kim & Jeesun Jung, 2018. "Semiparametric Kernel-Based Regression for Evaluating Interaction Between Pathway Effect and Covariate," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 129-152, March.
- Mark Rempel, 2016.
"Improving Overnight Loan Identification in Payments Systems,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 549-564, March.
- Mark Rempel, 2014. "Improving Overnight Loan Identification in Payments Systems," Staff Working Papers 14-25, Bank of Canada.
- Timothy B. Armstrong, 2014.
"Adaptive Testing on a Regression Function at a Point,"
Cowles Foundation Discussion Papers
1957R, Cowles Foundation for Research in Economics, Yale University, revised Feb 2015.
- Timothy B. Armstrong, 2014. "Adaptive Testing on a Regression Function at a Point," Cowles Foundation Discussion Papers 1957, Cowles Foundation for Research in Economics, Yale University, revised Oct 2014.
- Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018.
"Agent-based model calibration using machine learning surrogates,"
Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," SciencePo Working papers Main hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-03458875, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01499344, HAL.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Papers 1703.10639, arXiv.org, revised Apr 2017.
- Frencesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-based model calibration using machine learning surrogates," Documents de Travail de l'OFCE 2017-09, Observatoire Francais des Conjonctures Economiques (OFCE).
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," LEM Papers Series 2017/11, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
- Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Working Papers hal-01499344, HAL.
- Nucera, Federico & Valente, Giorgio, 2013.
"Carry trades and the performance of currency hedge funds,"
Journal of International Money and Finance, Elsevier, vol. 33(C), pages 407-425.
- Federico Nucera & Giorgio Valente, 2013. "Carry Trades and the Performance of Currency Hedge Funds," Working Papers 032013, Hong Kong Institute for Monetary Research.
- Nickole Moon & Christopher P. Morgan & Ruth Marx-Rattner & Alyssa Jeng & Rachel L. Johnson & Ijeoma Chikezie & Carmen Mannella & Mary D. Sammel & C. Neill Epperson & Tracy L. Bale, 2024. "Stress increases sperm respiration and motility in mice and men," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
- Axel Gandy & Georg Hahn, 2016. "A Framework for Monte Carlo based Multiple Testing," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(4), pages 1046-1063, December.
- Jung-sik Hong & Hyeongyu Yeo & Nam-Wook Cho & Taeuk Ahn, 2018. "Identification of Core Suppliers Based on E-Invoice Data Using Supervised Machine Learning," JRFM, MDPI, vol. 11(4), pages 1-13, October.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-30227-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.