IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v64y2013icp132-152.html
   My bibliography  Save this article

Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables

Author

Listed:
  • Fellinghauer, Bernd
  • Bühlmann, Peter
  • Ryffel, Martin
  • von Rhein, Michael
  • Reinhardt, Jan D.

Abstract

Random Forests in combination with Stability Selection allow to estimate stable conditional independence graphs with an error control mechanism for false positive selection. This approach is applicable to graphs containing both continuous and discrete variables at the same time. Its performance is evaluated in various simulation settings and compared with alternative approaches. Finally, the approach is applied to two heath-related data sets, first to study the interconnection of functional health components, personal, and environmental factors and second to identify risk factors which may be associated with adverse neurodevelopment after open-heart surgery.

Suggested Citation

  • Fellinghauer, Bernd & Bühlmann, Peter & Ryffel, Martin & von Rhein, Michael & Reinhardt, Jan D., 2013. "Stable graphical model estimation with Random Forests for discrete, continuous, and mixed variables," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 132-152.
  • Handle: RePEc:eee:csdana:v:64:y:2013:i:c:p:132-152
    DOI: 10.1016/j.csda.2013.02.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313000789
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.02.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lukas Meier & Sara Van De Geer & Peter Bühlmann, 2008. "The group lasso for logistic regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(1), pages 53-71, February.
    2. Jan Reinhardt & Ulrich Mansmann & Bernd Fellinghauer & Ralf Strobl & Eva Grill & Erik Elm & Gerold Stucki, 2011. "Functioning and disability in people living with spinal cord injury in high- and low-resourced countries: a comparative analysis of 14 countries," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 56(3), pages 341-352, June.
    3. Hapfelmeier, A. & Hothorn, T. & Ulm, K., 2012. "Recursive partitioning on incomplete data using surrogate decisions and multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1552-1565.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Archer, Kellie J., 2010. "rpartOrdinal: An R Package for Deriving a Classification Tree for Predicting an Ordinal Response," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 34(i07).
    6. Stanislav Kolenikov, 2009. "Confirmatory factor analysis using confa," Stata Journal, StataCorp LP, vol. 9(3), pages 329-373, September.
    7. Hapfelmeier, A. & Ulm, K., 2013. "A new variable selection approach using Random Forests," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 50-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashish Arora & Michelle Gittelman & Sarah Kaplan & John Lynch & Will Mitchell & Nicolaj Siggelkow & Mei Li & Ying Lin & Shuai Huang & Craig Crossland, 2016. "The use of sparse inverse covariance estimation for relationship detection and hypothesis generation in strategic management," Strategic Management Journal, Wiley Blackwell, vol. 37(1), pages 86-97, January.
    2. Sheng, Tianhong & Li, Bing & Solea, Eftychia, 2023. "On skewed Gaussian graphical models," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    3. Bar-Hen, Avner & Poggi, Jean-Michel, 2016. "Influence measures and stability for graphical models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 145-154.
    4. Kim, Kyongwon, 2022. "On principal graphical models with application to gene network," Computational Statistics & Data Analysis, Elsevier, vol. 166(C).
    5. Chun, Hyonho & Lee, Myung Hee & Fleet, James C. & Oh, Ji Hwan, 2016. "Graphical models via joint quantile regression with component selection," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 162-171.
    6. Jianqing Fan & Han Liu & Yang Ning & Hui Zou, 2017. "High dimensional semiparametric latent graphical model for mixed data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 405-421, March.
    7. Linh H. Nghiem & Francis K. C. Hui & Samuel Müller & Alan H. Welsh, 2022. "Estimation of graphical models for skew continuous data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1811-1841, December.
    8. Peter Bühlmann & Florencia Leonardi, 2016. "Comments on: A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 239-246, June.
    9. Hirose, Kei & Fujisawa, Hironori & Sese, Jun, 2017. "Robust sparse Gaussian graphical modeling," Journal of Multivariate Analysis, Elsevier, vol. 161(C), pages 172-190.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    3. Li, Peili & Jiao, Yuling & Lu, Xiliang & Kang, Lican, 2022. "A data-driven line search rule for support recovery in high-dimensional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    4. Wei, Fengrong & Zhu, Hongxiao, 2012. "Group coordinate descent algorithms for nonconvex penalized regression," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 316-326.
    5. Zeng, Yaohui & Yang, Tianbao & Breheny, Patrick, 2021. "Hybrid safe–strong rules for efficient optimization in lasso-type problems," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    6. Zanhua Yin, 2020. "Variable selection for sparse logistic regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(7), pages 821-836, October.
    7. Ciarleglio, Adam & Todd Ogden, R., 2016. "Wavelet-based scalar-on-function finite mixture regression models," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 86-96.
    8. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.
    9. Simon Hirsch & Florian Ziel, 2022. "Simulation-based Forecasting for Intraday Power Markets: Modelling Fundamental Drivers for Location, Shape and Scale of the Price Distribution," Papers 2211.13002, arXiv.org.
    10. Faisal Zahid & Gerhard Tutz, 2013. "Multinomial logit models with implicit variable selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(4), pages 393-416, December.
    11. Simon Hirsch & Jonathan Berrisch & Florian Ziel, 2024. "Online Distributional Regression," Papers 2407.08750, arXiv.org, revised Aug 2024.
    12. Gerhard Tutz & Gunther Schauberger, 2015. "A Penalty Approach to Differential Item Functioning in Rasch Models," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 21-43, March.
    13. Yang, Yuehan & Xia, Siwei & Yang, Hu, 2023. "Multivariate sparse Laplacian shrinkage for joint estimation of two graphical structures," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    14. Hendrik van der Wurp & Andreas Groll, 2023. "Introducing LASSO-type penalisation to generalised joint regression modelling for count data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 127-151, March.
    15. Yen, Tso-Jung & Yen, Yu-Min, 2016. "Structured variable selection via prior-induced hierarchical penalty functions," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 87-103.
    16. Abhik Ghosh & Magne Thoresen, 2018. "Non-concave penalization in linear mixed-effect models and regularized selection of fixed effects," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(2), pages 179-210, April.
    17. Jan D Reinhardt & Erik von Elm & Christine Fekete & Johannes Siegrist, 2012. "Social Inequalities of Functioning and Perceived Health in Switzerland–A Representative Cross-Sectional Analysis," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-7, June.
    18. Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
    19. Wanling Xie & Hu Yang, 2023. "Group sparse recovery via group square-root elastic net and the iterative multivariate thresholding-based algorithm," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 469-507, September.
    20. Chen, Shunjie & Yang, Sijia & Wang, Pei & Xue, Liugen, 2023. "Two-stage penalized algorithms via integrating prior information improve gene selection from omics data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:64:y:2013:i:c:p:132-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.