Effects of MgO Nanoparticles on Thermo-Physical Properties of LiNO 3 -NaNO 3 -KNO 3 for Thermal Energy Storage
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kasaeian, Alibakhsh & Eshghi, Amin Toghi & Sameti, Mohammad, 2015. "A review on the applications of nanofluids in solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 584-598.
- Peng, Qiang & Ding, Jing & Wei, Xiaolan & Yang, Jianping & Yang, Xiaoxi, 2010. "The preparation and properties of multi-component molten salts," Applied Energy, Elsevier, vol. 87(9), pages 2812-2817, September.
- Jing Liu & Yongqing He & Xianliang Lei, 2019. "Heat-Transfer Characteristics of Liquid Sodium in a Solar Receiver Tube with a Nonuniform Heat Flux," Energies, MDPI, vol. 12(8), pages 1-16, April.
- Wei, Xiaolan & Yin, Yue & Qin, Bo & Wang, Weilong & Ding, Jing & Lu, Jianfeng, 2020. "Preparation and enhanced thermal conductivity of molten salt nanofluids with nearly unaltered viscosity," Renewable Energy, Elsevier, vol. 145(C), pages 2435-2444.
- Jianfeng Lu & Yarong Wang & Jing Ding, 2020. "Nonuniform Heat Transfer Model and Performance of Molten Salt Cavity Receiver," Energies, MDPI, vol. 13(4), pages 1-19, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohammad, Mehedi Bin & Brooks, Geoffrey Alan & Rhamdhani, M. Akbar, 2017. "Thermal analysis of molten ternary lithium-sodium-potassium nitrates," Renewable Energy, Elsevier, vol. 104(C), pages 76-87.
- Mwesigye, Aggrey & Meyer, Josua P., 2017. "Optimal thermal and thermodynamic performance of a solar parabolic trough receiver with different nanofluids and at different concentration ratios," Applied Energy, Elsevier, vol. 193(C), pages 393-413.
- Amaris, Carlos & Vallès, Manel & Bourouis, Mahmoud, 2018. "Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review," Applied Energy, Elsevier, vol. 231(C), pages 826-853.
- Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
- Ma, Ting & Guo, Zhixiong & Lin, Mei & Wang, Qiuwang, 2021. "Recent trends on nanofluid heat transfer machine learning research applied to renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Arunkumar, T. & Lim, Hyeong Woo & Denkenberger, David & Lee, Sang Joon, 2022. "A review on carbonized natural green flora for solar desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
- Du, Lichan & Ding, Jing & Tian, Heqing & Wang, Weilong & Wei, Xiaolan & Song, Ming, 2017. "Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process," Applied Energy, Elsevier, vol. 204(C), pages 1225-1230.
- Akbarzadeh, Sanaz & Valipour, Mohammad Sadegh, 2020. "Energy and exergy analysis of a parabolic trough collector using helically corrugated absorber tube," Renewable Energy, Elsevier, vol. 155(C), pages 735-747.
- Sainz-Mañas, Miguel & Bataille, Françoise & Caliot, Cyril & Vossier, Alexis & Flamant, Gilles, 2022. "Direct absorption nanofluid-based solar collectors for low and medium temperatures. A review," Energy, Elsevier, vol. 260(C).
- Rovira, Antonio & Montes, María José & Valdes, Manuel & Martínez-Val, José María, 2011. "Energy management in solar thermal power plants with double thermal storage system and subdivided solar field," Applied Energy, Elsevier, vol. 88(11), pages 4055-4066.
- Eleonora Ponticorvo & Mariagrazia Iuliano & Claudia Cirillo & Angelo Maiorino & Ciro Aprea & Maria Sarno, 2022. "Fouling Behavior and Dispersion Stability of Nanoparticle-Based Refrigeration Fluid," Energies, MDPI, vol. 15(9), pages 1-21, April.
- Rashidi, Saman & Esfahani, Javad Abolfazli & Rashidi, Abbas, 2017. "A review on the applications of porous materials in solar energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1198-1210.
- Wei, Xiaolan & Qin, Bo & Yang, Chuntao & Wang, Weilong & Ding, Jing & Wang, Yan & Peng, Qiang, 2019. "Nox emission of ternary nitrate molten salts in high-temperature heat storage and transfer process," Applied Energy, Elsevier, vol. 236(C), pages 147-154.
- Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
- Said, Zafar & Arora, Sahil & Bellos, Evangelos, 2018. "A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 302-316.
- Suganthi, K.S. & Rajan, K.S., 2017. "Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 226-255.
- Wang, Tao & Mantha, Divakar & Reddy, Ramana G., 2013. "Novel low melting point quaternary eutectic system for solar thermal energy storage," Applied Energy, Elsevier, vol. 102(C), pages 1422-1429.
- José Pereira & Ana Moita & António Moreira, 2023. "An Overview of the Molten Salt Nanofluids as Thermal Energy Storage Media," Energies, MDPI, vol. 16(4), pages 1-51, February.
- Sarafraz, M.M. & Safaei, M.R., 2019. "Diurnal thermal evaluation of an evacuated tube solar collector (ETSC) charged with graphene nanoplatelets-methanol nano-suspension," Renewable Energy, Elsevier, vol. 142(C), pages 364-372.
More about this item
Keywords
thermal energy storage; ternary nitrate salt; nanofluid; thermal properties;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:677-:d:488934. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.