Preparation and enhanced thermal conductivity of molten salt nanofluids with nearly unaltered viscosity
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2019.04.153
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kondaiah, P. & Pitchumani, R., 2023. "Progress and opportunities in corrosion mitigation in heat transfer fluids for next-generation concentrating solar power," Renewable Energy, Elsevier, vol. 205(C), pages 956-991.
- Rong, Zhenzhou & Pan, Gechuanqi & Lu, Jianfeng & Liu, Shule & Ding, Jing & Wang, Weilong & Lee, Duu-Jong, 2021. "Ab-initio molecular dynamics study on thermal property of NaCl–CaCl2 molten salt for high-temperature heat transfer and storage," Renewable Energy, Elsevier, vol. 163(C), pages 579-588.
- Svobodova-Sedlackova, Adela & Barreneche, Camila & Alonso, Gerard & Fernandez, A. Inés & Gamallo, Pablo, 2020. "Effect of nanoparticles in molten salts – MD simulations and experimental study," Renewable Energy, Elsevier, vol. 152(C), pages 208-216.
- Luo, Qingyang & Liu, Xianglei & Wang, Haolei & Xu, Qiao & Tian, Yang & Liang, Ting & Liu, Qibin & Liu, Zhan & Yang, Xiaohu & Xuan, Yimin & Li, Yongliang & Ding, Yulong, 2022. "Synergetic enhancement of heat storage density and heat transport ability of phase change materials inlaid in 3D hierarchical ceramics," Applied Energy, Elsevier, vol. 306(PA).
- Skrbek, Kryštof & Bartůněk, Vilém & Sedmidubský, David, 2022. "Molten salt-based nanocomposites for thermal energy storage: Materials, preparation techniques and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
- José Pereira & Ana Moita & António Moreira, 2023. "An Overview of the Molten Salt Nanofluids as Thermal Energy Storage Media," Energies, MDPI, vol. 16(4), pages 1-51, February.
- Jianfeng Lu & Zhan Zhang & Weilong Wang & Jing Ding, 2021. "Effects of MgO Nanoparticles on Thermo-Physical Properties of LiNO 3 -NaNO 3 -KNO 3 for Thermal Energy Storage," Energies, MDPI, vol. 14(3), pages 1-10, January.
- Han, Yan & Zhang, Cancan & Wu, Yuting & Lu, Yuanwei, 2021. "Investigation on thermal performance of quaternary nitrate-nitrite mixed salt and solar salt under thermal shock condition," Renewable Energy, Elsevier, vol. 175(C), pages 1041-1051.
- Zhao Li & Liu Cui & Baorang Li & Xiaoze Du, 2021. "Effects of SiO 2 Nanoparticle Dispersion on The Heat Storage Property of the Solar Salt for Solar Power Applications," Energies, MDPI, vol. 14(3), pages 1-14, January.
More about this item
Keywords
Preparation; MgO doped nano-fluids; Enhancement; Thermal conductivity; Specific heat capacity;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:145:y:2020:i:c:p:2435-2444. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.