IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p598-d486550.html
   My bibliography  Save this article

A Fault Diagnosis Mechanism with Power Generation Improvement for a Photovoltaic Module Array

Author

Listed:
  • Kuei-Hsiang Chao

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

  • Pei-Lun Lai

    (Department of Electrical Engineering, National Chin-Yi University of Technology, Taichung 41170, Taiwan)

Abstract

This paper aims to develop an online diagnostic mechanism, doubling as a maximum power point tracking scheme, for a photovoltaic (PV) module array. In case of malfunction or shadow event occurring to a PV module, the presented diagnostic mechanism is enabled, automatically and immediately, to reconfigure a PV module array for maximum output power operation under arbitrary working conditions. Meanwhile, the malfunctioning or shaded PV module can be located instantly by this diagnostic mechanism according to the array configuration, and a PV module replacement process is made more efficient than ever before for the maintenance crew. In this manner, the intended maximum output power operation can be resumed as soon as possible in consideration of a minimum business loss. Using a particle swarm optimization (PSO)-based algorithm, the PV module array is reconfigured by means of switch manipulations between modules, such that a load is supplied with the maximum amount of output power. For compactness, the PSO-based online diagnostic algorithm is implemented herein using a TMS320F2808 digital signal processor (DSP) and is experimentally validated as successful to identify a malfunctioning PV module at the end of this work.

Suggested Citation

  • Kuei-Hsiang Chao & Pei-Lun Lai, 2021. "A Fault Diagnosis Mechanism with Power Generation Improvement for a Photovoltaic Module Array," Energies, MDPI, vol. 14(3), pages 1-19, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:598-:d:486550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jirada Gosumbonggot & Goro Fujita, 2019. "Partial Shading Detection and Global Maximum Power Point Tracking Algorithm for Photovoltaic with the Variation of Irradiation and Temperature," Energies, MDPI, vol. 12(2), pages 1-22, January.
    2. Bradai, R. & Boukenoui, R. & Kheldoun, A. & Salhi, H. & Ghanes, M. & Barbot, J-P. & Mellit, A., 2017. "Experimental assessment of new fast MPPT algorithm for PV systems under non-uniform irradiance conditions," Applied Energy, Elsevier, vol. 199(C), pages 416-429.
    3. Oswaldo Menéndez & Robert Guamán & Marcelo Pérez & Fernando Auat Cheein, 2018. "Photovoltaic Modules Diagnosis Using Artificial Vision Techniques for Artifact Minimization," Energies, MDPI, vol. 11(7), pages 1-23, June.
    4. Wang, Yaw-Juen & Hsu, Po-Chun, 2011. "An investigation on partial shading of PV modules with different connection configurations of PV cells," Energy, Elsevier, vol. 36(5), pages 3069-3078.
    5. An Liu & Erwie Zahara & Ming-Ta Yang, 2012. "A Modified NM-PSO Method for Parameter Estimation Problems of Models," Journal of Applied Mathematics, Hindawi, vol. 2012, pages 1-12, October.
    6. Malathy, S. & Ramaprabha, R., 2018. "Reconfiguration strategies to extract maximum power from photovoltaic array under partially shaded conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2922-2934.
    7. Kamran Ali Khan Niazi & Yongheng Yang & Mashood Nasir & Dezso Sera, 2019. "Evaluation of Interconnection Configuration Schemes for PV Modules with Switched-Inductor Converters under Partial Shading Conditions," Energies, MDPI, vol. 12(14), pages 1-12, July.
    8. Yanmin Liu & Ben Niu, 2012. "A Novel PSO Model Based on Simulating Human Social Communication Behavior," Discrete Dynamics in Nature and Society, Hindawi, vol. 2012, pages 1-21, October.
    9. Chen, Zhicong & Wu, Lijun & Cheng, Shuying & Lin, Peijie & Wu, Yue & Lin, Wencheng, 2017. "Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics," Applied Energy, Elsevier, vol. 204(C), pages 912-931.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ranjbaran, Parisa & Yousefi, Hossein & Gharehpetian, G.B. & Astaraei, Fatemeh Razi, 2019. "A review on floating photovoltaic (FPV) power generation units," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 332-347.
    2. Yadav, Anurag Singh & Mukherjee, V., 2021. "Conventional and advanced PV array configurations to extract maximum power under partial shading conditions: A review," Renewable Energy, Elsevier, vol. 178(C), pages 977-1005.
    3. Pi-Yun Chen & Kuei-Hsiang Chao & Bo-Jyun Liao, 2018. "Joint Operation between a PSO-Based Global MPP Tracker and a PV Module Array Configuration Strategy under Shaded or Malfunctioning Conditions," Energies, MDPI, vol. 11(8), pages 1-16, August.
    4. Aljafari, Belqasem & Satpathy, Priya Ranjan & Thanikanti, Sudhakar Babu, 2022. "Partial shading mitigation in PV arrays through dragonfly algorithm based dynamic reconfiguration," Energy, Elsevier, vol. 257(C).
    5. Manoharan Premkumar & Umashankar Subramaniam & Thanikanti Sudhakar Babu & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2020. "Evaluation of Mathematical Model to Characterize the Performance of Conventional and Hybrid PV Array Topologies under Static and Dynamic Shading Patterns," Energies, MDPI, vol. 13(12), pages 1-37, June.
    6. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Camilo, Jones C. & Guedes, Tatiana & Fernandes, Darlan A. & Melo, J.D. & Costa, F.F. & Sguarezi Filho, Alfeu J., 2019. "A maximum power point tracking for photovoltaic systems based on Monod equation," Renewable Energy, Elsevier, vol. 130(C), pages 428-438.
    8. Waleed Al Abri & Rashid Al Abri & Hassan Yousef & Amer Al-Hinai, 2021. "A Simple Method for Detecting Partial Shading in PV Systems," Energies, MDPI, vol. 14(16), pages 1-12, August.
    9. Arévalo, Paul & Benavides, Dario & Tostado-Véliz, Marcos & Aguado, José A. & Jurado, Francisco, 2023. "Smart monitoring method for photovoltaic systems and failure control based on power smoothing techniques," Renewable Energy, Elsevier, vol. 205(C), pages 366-383.
    10. Peng Zhang & Huibin Sui, 2020. "Maximum Power Point Tracking Technology of Photovoltaic Array under Partial Shading Based On Adaptive Improved Differential Evolution Algorithm," Energies, MDPI, vol. 13(5), pages 1-15, March.
    11. Wang, Jian-jun & Deng, Yu-cong & Sun, Wen-biao & Zheng, Xiao-bin & Cui, Zheng, 2023. "Maximum power point tracking method based on impedance matching for a micro hydropower generator," Applied Energy, Elsevier, vol. 340(C).
    12. Rodrigo, P. & Gutiérrez, S. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, F. & Pérez-Higueras, P.J., 2015. "A methodology for the electrical characterization of shaded high concentrator photovoltaic modules," Energy, Elsevier, vol. 89(C), pages 768-777.
    13. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    14. Haoming Liu & Muhammad Yasir Ali Khan & Xiaoling Yuan, 2023. "Hybrid Maximum Power Extraction Methods for Photovoltaic Systems: A Comprehensive Review," Energies, MDPI, vol. 16(15), pages 1-64, July.
    15. Ding, Kun & Chen, Xiang & Weng, Shuai & Liu, Yongjie & Zhang, Jingwei & Li, Yuanliang & Yang, Zenan, 2023. "Health status evaluation of photovoltaic array based on deep belief network and Hausdorff distance," Energy, Elsevier, vol. 262(PB).
    16. Shan, Chuan & Sun, Kangwen & Ji, Xinzhe & Cheng, Dongji, 2023. "A reconfiguration method for photovoltaic array of stratospheric airship based on multilevel optimization algorithm," Applied Energy, Elsevier, vol. 352(C).
    17. Wenjie Liu & Kamran Ali Khan Niazi & Tamas Kerekes & Yongheng Yang, 2019. "A Review on Transformerless Step-Up Single-Phase Inverters with Different DC-Link Voltage for Photovoltaic Applications," Energies, MDPI, vol. 12(19), pages 1-17, September.
    18. Lappalainen, Kari & Valkealahti, Seppo, 2017. "Output power variation of different PV array configurations during irradiance transitions caused by moving clouds," Applied Energy, Elsevier, vol. 190(C), pages 902-910.
    19. Cocco Mariani, Viviana & Hennings Och, Stephan & dos Santos Coelho, Leandro & Domingues, Eric, 2019. "Pressure prediction of a spark ignition single cylinder engine using optimized extreme learning machine models," Applied Energy, Elsevier, vol. 249(C), pages 204-221.
    20. Santiago Pindado & Javier Cubas & Elena Roibás-Millán & Francisco Bugallo-Siegel & Félix Sorribes-Palmer, 2018. "Assessment of Explicit Models for Different Photovoltaic Technologies," Energies, MDPI, vol. 11(6), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:598-:d:486550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.