IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i2p486-d482308.html
   My bibliography  Save this article

Method of Estimating Uncertainty as a Way to Evaluate Continuity Quality of Power Supply in Hospital Devices

Author

Listed:
  • Marek Stawowy

    (Faculty of Transport, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland)

  • Adam Rosiński

    (Faculty of Transport, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland)

  • Jacek Paś

    (Faculty of Electronic, Military University of Technology, Gen. S. Kaliskiego 2, 00-908 Warsaw, Poland)

  • Tomasz Klimczak

    (The Main School of Fire Service, Juliusza Słowackiego 52/54, 01-629 Warsaw, Poland)

Abstract

The article presents issues related to the determination of the continuity quality of power supply (CQoPS) for hospital electrical devices. The model describing CQoPS takes into account power redundancy. The uncertainty modeling method based on the certainty factor (CF) of the hypothesis was used to establish the single-valued CQoPS factor. CQoPS modeling takes into account multidimensional quality models and physical stages of power. The quality models take into account seven dimensions that make up CQoPS (availability, appropriate amount, power supply reliability, power quality, assurance, responsiveness, security). The model of power stages includes five of these stages (power generation, delivery to recipient, distribution by recipient, delivery to device, power-consuming device). To date, when designing hospital power systems, the applied reliability indicators revealed limitations because they do not consider all the possible factors influencing the power continuity. Estimating the supply continuity quality with the use of the uncertainty modeling proposed in this article allows for taking into account all possible factors (not just reliability factors) that may affect supply continuity. The presented modeling offers an additional advantage, namely, it allows an expanded evaluation of the hospital supply system and a description using only one indicator. This fact renders the evaluation of the supply system possible for unqualified staff. At the end of the article, some examples of calculations and simulations are presented, thus showing that the applied methods give the expected results.

Suggested Citation

  • Marek Stawowy & Adam Rosiński & Jacek Paś & Tomasz Klimczak, 2021. "Method of Estimating Uncertainty as a Way to Evaluate Continuity Quality of Power Supply in Hospital Devices," Energies, MDPI, vol. 14(2), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:486-:d:482308
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/2/486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/2/486/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ajit Kumar Verma & Ajit Srividya & Durga Rao Karanki, 2010. "Reliability and Safety Engineering," Springer Series in Reliability Engineering, Springer, number 978-1-84996-232-2, March.
    2. Vladimír Krepl & Husam I. Shaheen & Ghaeth Fandi & Luboš Smutka & Zdenek Muller & Josef Tlustý & Tarek Husein & Safwan Ghanem, 2020. "The Role of Renewable Energies in the Sustainable Development of Post-Crisis Electrical Power Sectors Reconstruction," Energies, MDPI, vol. 13(23), pages 1-31, November.
    3. Seunghyun Park & Surender Reddy Salkuti, 2019. "Optimal Energy Management of Railroad Electrical Systems with Renewable Energy and Energy Storage Systems," Sustainability, MDPI, vol. 11(22), pages 1-16, November.
    4. Sara Antomarioni & Marjorie Maria Bellinello & Maurizio Bevilacqua & Filippo Emanuele Ciarapica & Renan Favarão da Silva & Gilberto Francisco Martha de Souza, 2020. "A Data-Driven Approach to Extend Failure Analysis: A Framework Development and a Case Study on a Hydroelectric Power Plant," Energies, MDPI, vol. 13(23), pages 1-16, December.
    5. Stanisław Duer, 2020. "Assessment of the Operation Process of Wind Power Plant’s Equipment with the Use of an Artificial Neural Network," Energies, MDPI, vol. 13(10), pages 1-17, May.
    6. Carli, Raffaele & Dotoli, Mariagrazia & Jantzen, Jan & Kristensen, Michael & Ben Othman, Sarah, 2020. "Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marek Stawowy & Adam Rosiński & Mirosław Siergiejczyk & Krzysztof Perlicki, 2021. "Quality and Reliability-Exploitation Modeling of Power Supply Systems," Energies, MDPI, vol. 14(9), pages 1-16, May.
    2. Konrad Zajkowski & Stanisław Duer & Jacek Paś & László Pokorádi, 2023. "Cooperation of a Non-Linear Receiver with a Three-Phase Power Grid," Energies, MDPI, vol. 16(3), pages 1-17, February.
    3. Jarosław Łukasiak & Michał Wiśnios & Adam Rosiński, 2023. "Method for Evaluating the Effectiveness of Electrical Circuit Protection with Miniature Fuse-Links," Energies, MDPI, vol. 16(2), pages 1-28, January.
    4. Stanisław Duer & Marek Woźniak & Jacek Paś & Konrad Zajkowski & Arkadiusz Ostrowski & Marek Stawowy & Zbigniew Budniak, 2023. "Reliability Testing of Wind Farm Devices Based on the Mean Time to Failures," Energies, MDPI, vol. 16(6), pages 1-13, March.
    5. Marek Stawowy & Adam Rosiński & Jacek Paś & Stanisław Duer & Marta Harničárová & Krzysztof Perlicki, 2023. "The Reliability and Exploitation Analysis Method of the ICT System Power Supply with the Use of Modelling Based on Rough Sets," Energies, MDPI, vol. 16(12), pages 1-18, June.
    6. Oleg Gubarevych & Stanisław Duer & Inna Melkonova & Marek Woźniak & Jacek Paś & Marek Stawowy & Krzysztof Rokosz & Konrad Zajkowski & Dariusz Bernatowicz, 2023. "Research on and Assessment of the Reliability of Railway Transport Systems with Induction Motors," Energies, MDPI, vol. 16(19), pages 1-21, September.
    7. Marek Stawowy & Stanisław Duer & Krzysztof Perlicki & Tomasz Mrozek & Marta Harničárová, 2023. "Supporting Information Quality Management in Information and Communications Technology Systems with Uncertainty Modelling," Energies, MDPI, vol. 16(6), pages 1-18, March.
    8. Stanisław Duer & Marek Woźniak & Arkadiusz Ostrowski & Jacek Paś & Radosław Duer & Konrad Zajkowski & Dariusz Bernatowicz, 2022. "Assessment of the Reliability of Wind Farm Device on the Basis of Modeling Its Operation Process," Energies, MDPI, vol. 16(1), pages 1-16, December.
    9. Marek Stawowy & Stanisław Duer & Jacek Paś & Wojciech Wawrzyński, 2021. "Determining Information Quality in ICT Systems," Energies, MDPI, vol. 14(17), pages 1-18, September.
    10. Stanisław Duer & Jan Valicek & Jacek Paś & Marek Stawowy & Dariusz Bernatowicz & Radosław Duer & Marcin Walczak, 2021. "Neural Networks in the Diagnostics Process of Low-Power Solar Plant Devices," Energies, MDPI, vol. 14(9), pages 1-18, May.
    11. Stanisław Duer & Marek Woźniak & Jacek Paś & Konrad Zajkowski & Dariusz Bernatowicz & Arkadiusz Ostrowski & Zbigniew Budniak, 2023. "Reliability Testing of Wind Farm Devices Based on the Mean Time between Failures (MTBF)," Energies, MDPI, vol. 16(4), pages 1-16, February.
    12. Qing Zhou & Yuelei Xu & Xin Qi & Zhaoxiang Zhang, 2022. "Design and Simulation of a Highly Reliable Modular High-Power Current Source," Energies, MDPI, vol. 15(22), pages 1-18, November.
    13. Krzysztof Jakubowski & Jacek Paś & Stanisław Duer & Jarosław Bugaj, 2021. "Operational Analysis of Fire Alarm Systems with a Focused, Dispersed and Mixed Structure in Critical Infrastructure Buildings," Energies, MDPI, vol. 14(23), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krzysztof Jakubowski & Jacek Paś & Stanisław Duer & Jarosław Bugaj, 2021. "Operational Analysis of Fire Alarm Systems with a Focused, Dispersed and Mixed Structure in Critical Infrastructure Buildings," Energies, MDPI, vol. 14(23), pages 1-24, November.
    2. Oleg Gubarevych & Stanisław Duer & Inna Melkonova & Marek Woźniak & Jacek Paś & Marek Stawowy & Krzysztof Rokosz & Konrad Zajkowski & Dariusz Bernatowicz, 2023. "Research on and Assessment of the Reliability of Railway Transport Systems with Induction Motors," Energies, MDPI, vol. 16(19), pages 1-21, September.
    3. Marek Stawowy & Adam Rosiński & Mirosław Siergiejczyk & Krzysztof Perlicki, 2021. "Quality and Reliability-Exploitation Modeling of Power Supply Systems," Energies, MDPI, vol. 14(9), pages 1-16, May.
    4. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    6. Stanisław Duer & Krzysztof Rokosz & Dariusz Bernatowicz & Arkadiusz Ostrowski & Marek Woźniak & Konrad Zajkowski & Atif Iqbal, 2022. "Organization and Reliability Testing of a Wind Farm Device in Its Operational Process," Energies, MDPI, vol. 15(17), pages 1-16, August.
    7. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    8. Zhu, Jianquan & Xia, Yunrui & Mo, Xiemin & Guo, Ye & Chen, Jiajun, 2021. "A bilevel bidding and clearing model incorporated with a pricing strategy for the trading of energy storage use rights," Energy, Elsevier, vol. 235(C).
    9. Marek Stawowy & Adam Rosiński & Jacek Paś & Stanisław Duer & Marta Harničárová & Krzysztof Perlicki, 2023. "The Reliability and Exploitation Analysis Method of the ICT System Power Supply with the Use of Modelling Based on Rough Sets," Energies, MDPI, vol. 16(12), pages 1-18, June.
    10. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    11. Mariusz Dacko & Aleksandra Płonka & Łukasz Satoła & Aneta Dacko, 2021. "Sustainable Development According to the Opinions of Polish Experts," Energies, MDPI, vol. 14(17), pages 1-18, August.
    12. Tomasz Klimczak & Jacek Paś & Stanisław Duer & Adam Rosiński & Patryk Wetoszka & Kamil Białek & Michał Mazur, 2022. "Selected Issues Associated with the Operational and Power Supply Reliability of Fire Alarm Systems," Energies, MDPI, vol. 15(22), pages 1-26, November.
    13. Sanjin Gumbarević & Ivana Burcar Dunović & Bojan Milovanović & Mergim Gaši, 2020. "Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery," Energies, MDPI, vol. 13(20), pages 1-21, October.
    14. Kenan Hatipoglu & Mohammed Olama & Yaosuo Xue, 2020. "Model-Free Dynamic Voltage Control of Distributed Energy Resource (DER)-Based Microgrids," Energies, MDPI, vol. 13(15), pages 1-17, July.
    15. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    16. Jarosław Łukasiak & Adam Rosiński & Michał Wiśnios, 2022. "The Issue of Evaluating the Effectiveness of Miniature Safety Fuses as Anti-Damage Systems," Energies, MDPI, vol. 15(11), pages 1-18, May.
    17. Bolbot, Victor & Trivyza, Nikoletta L. & Theotokatos, Gerasimos & Boulougouris, Evangelos & Rentizelas, Athanasios & Vassalos, Dracos, 2020. "Cruise ships power plant optimisation and comparative analysis," Energy, Elsevier, vol. 196(C).
    18. Cristina Johansson & Johan Ölvander & Micael Derelöv, 2018. "Multi-objective optimization for safety and reliability trade-off: Optimization and results processing," Journal of Risk and Reliability, , vol. 232(6), pages 661-676, December.
    19. Hamed Jafari Kaleybar & Hossein Hafezi & Morris Brenna & Roberto Sebastiano Faranda, 2024. "Smart AC-DC Coupled Hybrid Railway Microgrids Integrated with Renewable Energy Sources: Current and Next Generation Architectures," Energies, MDPI, vol. 17(5), pages 1-27, March.
    20. Ewa Chomać-Pierzecka, 2023. "Pharmaceutical Companies in the Light of the Idea of Sustainable Development—An Analysis of Selected Aspects of Sustainable Management," Sustainability, MDPI, vol. 15(11), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:486-:d:482308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.