IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v232y2018i6p661-676.html
   My bibliography  Save this article

Multi-objective optimization for safety and reliability trade-off: Optimization and results processing

Author

Listed:
  • Cristina Johansson
  • Johan Ölvander
  • Micael Derelöv

Abstract

In early design phases, it is vital to be able to screen the design space for a set of promising design alternatives for further study. This article presents a method able to balance several objectives of different mathematical natures, with high impact on the design choices. The method (MOSART) handles multi-objective optimization for safety and reliability trade-offs. The article focuses on optimization problem approach and processing of results as a base for decision-making. The output of the optimization step is the selection of specific system elements obtaining the best balance between the targets. However, what is a good base for decision can easily transform into too much information and overloading of the decision-maker. To solve this potential issue, from a set of Pareto optimal solutions, a smaller sub-set of selected solutions are visualized and filtered out using preference levels of the objectives, yielding a solid base for decision-making and valuable information on potential solutions. Trends were observed regarding each system element and discussed while processing the results of the analysis, supporting the decision of one final best solution.

Suggested Citation

  • Cristina Johansson & Johan Ölvander & Micael Derelöv, 2018. "Multi-objective optimization for safety and reliability trade-off: Optimization and results processing," Journal of Risk and Reliability, , vol. 232(6), pages 661-676, December.
  • Handle: RePEc:sae:risrel:v:232:y:2018:i:6:p:661-676
    DOI: 10.1177/1748006X18757075
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1748006X18757075
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1748006X18757075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ajit Kumar Verma & Ajit Srividya & Durga Rao Karanki, 2010. "Reliability and Safety Engineering," Springer Series in Reliability Engineering, Springer, number 978-1-84996-232-2, March.
    2. Limbourg, Philipp & Kochs, Hans-Dieter, 2008. "Multi-objective optimization of generalized reliability design problems using feature models—A concept for early design stages," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 815-828.
    3. Zio, Enrico & Podofillini, Luca, 2007. "Importance measures and genetic algorithms for designing a risk-informed optimally balanced system," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1435-1447.
    4. Gregory Levitin, 2005. "The Universal Generating Function in Reliability Analysis and Optimization," Springer Series in Reliability Engineering, Springer, number 978-1-84628-245-4, March.
    5. Rocchetta, R. & Li, Y.F. & Zio, E., 2015. "Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 47-61.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marek Stawowy & Adam Rosiński & Mirosław Siergiejczyk & Krzysztof Perlicki, 2021. "Quality and Reliability-Exploitation Modeling of Power Supply Systems," Energies, MDPI, vol. 14(9), pages 1-16, May.
    2. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Hausken, Kjell & Levitin, Gregory, 2009. "Minmax defense strategy for complex multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 577-587.
    4. Yeh, Wei-Chang & Bae, Changseok & Huang, Chia-Ling, 2015. "A new cut-based algorithm for the multi-state flow network reliability problem," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 1-7.
    5. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.
    6. Nourelfath, Mustapha & Ait-Kadi, Daoud, 2007. "Optimization of series–parallel multi-state systems under maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1620-1626.
    7. Bigatti, A.M. & Pascual-Ortigosa, P. & Sáenz-de-Cabezón, E., 2021. "A C++ class for multi-state algebraic reliability computations," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Jia, Heping & Ding, Yi & Peng, Rui & Liu, Hanlin & Song, Yonghua, 2020. "Reliability assessment and activation sequence optimization of non-repairable multi-state generation systems considering warm standby," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Lu, Shaoqi & Shi, Daimin & Xiao, Hui, 2019. "Reliability of sliding window systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 366-376.
    10. Peng, Rui & Xiao, Hui & Liu, Hanlin, 2017. "Reliability of multi-state systems with a performance sharing group of limited size," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 164-170.
    11. Marek Stawowy & Adam Rosiński & Jacek Paś & Stanisław Duer & Marta Harničárová & Krzysztof Perlicki, 2023. "The Reliability and Exploitation Analysis Method of the ICT System Power Supply with the Use of Modelling Based on Rough Sets," Energies, MDPI, vol. 16(12), pages 1-18, June.
    12. Dui, Hongyan & Lu, Yaohui & Chen, Liwei, 2024. "Importance-based system cost management and failure risk analysis for different phases in life cycle," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. Fan, Zhi-Ping & Cai, Siqin & Guo, Dongliang & Xu, Bo, 2022. "Facing the uncertainty of renewable energy production: Production decisions of a power plant with different risk attitudes," Renewable Energy, Elsevier, vol. 199(C), pages 1237-1247.
    14. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    15. Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Yeh, Wei-Chang, 2017. "Evaluation of the one-to-all-target-subsets reliability of a novel deterioration-effect acyclic multi-state information network," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 132-137.
    17. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2013. "Cold-standby sequencing optimization considering mission cost," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 28-34.
    18. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    19. Zio, E. & Bazzo, R., 2011. "Level Diagrams analysis of Pareto Front for multiobjective system redundancy allocation," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 569-580.
    20. Niu, Yi-Feng & Gao, Zi-You & Lam, William H.K., 2017. "A new efficient algorithm for finding all d-minimal cuts in multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 151-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:232:y:2018:i:6:p:661-676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.