IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3838-d390279.html
   My bibliography  Save this article

Model-Free Dynamic Voltage Control of Distributed Energy Resource (DER)-Based Microgrids

Author

Listed:
  • Kenan Hatipoglu

    (Electrical and Computer Engineering Department, West Virginia University Institute of Technology, Beckley, WV 25801, USA)

  • Mohammed Olama

    (Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA)

  • Yaosuo Xue

    (Electrical and Electronics Systems Research Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA)

Abstract

In this paper, we present a new control technique for sustaining dynamic voltage stability by effective reactive power control and coordination of distributed energy resources (DERs) in microgrids. The proposed control technique is based on model-free control (MFC), which has shown successful operation and improved performance in different domains and applications. This paper presents its first use in the voltage stability of a microgrid setting employing multiple synchronous generator (SG)-based and power electronic (PE)-based DERs. MFC is a computationally efficient, data-driven control technique that does not require modelling of the different components and disturbances in the power system. It is utilized as an online controller to achieve the dynamic voltage stability of a microgrid system under different disturbances and fault conditions. A 21-bus microgrid system fed by multiple DERs is considered as a case study and the overall dynamic voltage stability is investigated using time-domain dynamic simulations. Numerical results show that the proposed MFC provides improvements on the dynamic load bus voltage profiles and requires less computational time as compared to the traditional enhanced microgrid voltage stabilizer (EMGVS) scheme. Due to its simplicity and low computational requirement, MFC can be easily implemented in resource-constrained computing devices such as smart inverters.

Suggested Citation

  • Kenan Hatipoglu & Mohammed Olama & Yaosuo Xue, 2020. "Model-Free Dynamic Voltage Control of Distributed Energy Resource (DER)-Based Microgrids," Energies, MDPI, vol. 13(15), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3838-:d:390279
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3838/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3838/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jama, M.A. & Noura, H. & Wahyudie, A. & Assi, A., 2015. "Enhancing the performance of heaving wave energy converters using model-free control approach," Renewable Energy, Elsevier, vol. 83(C), pages 931-941.
    2. Carli, Raffaele & Dotoli, Mariagrazia & Jantzen, Jan & Kristensen, Michael & Ben Othman, Sarah, 2020. "Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø," Energy, Elsevier, vol. 198(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    2. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    3. Zhu, Jianquan & Xia, Yunrui & Mo, Xiemin & Guo, Ye & Chen, Jiajun, 2021. "A bilevel bidding and clearing model incorporated with a pricing strategy for the trading of energy storage use rights," Energy, Elsevier, vol. 235(C).
    4. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    5. Nikolaos Kolokas & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "Multi-Step Energy Demand and Generation Forecasting with Confidence Used for Specification-Free Aggregate Demand Optimization," Energies, MDPI, vol. 14(11), pages 1-36, May.
    6. Li, Xiaozhu & Chen, Laijun & Sun, Fan & Hao, Yibo & Du, Xili & Mei, Shenwei, 2023. "Share or not share, the analysis of energy storage interaction of multiple renewable energy stations based on the evolution game," Renewable Energy, Elsevier, vol. 208(C), pages 679-692.
    7. Changsheng Liu & Xingxing Zhang, 2022. "Lithium-ion battery capacity configuration strategy for photovoltaic microgrid [DMPPT control of photovoltaic microgrid based on improved sparrow search algorithm]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 850-855.
    8. Wei, Congying & Wu, Qiuwei & Xu, Jian & Sun, Yuanzhang & Jin, Xiaolong & Liao, Siyang & Yuan, Zhiyong & Yu, Li, 2020. "Distributed scheduling of smart buildings to smooth power fluctuations considering load rebound," Applied Energy, Elsevier, vol. 276(C).
    9. Walker, Awnalisa & Kwon, Soongeol, 2021. "Design of structured control policy for shared energy storage in residential community: A stochastic optimization approach," Applied Energy, Elsevier, vol. 298(C).
    10. Mbungu, Nsilulu T. & Bansal, Ramesh C. & Naidoo, Raj M. & Bettayeb, Maamar & Siti, Mukwanga W. & Bipath, Minnesh, 2020. "A dynamic energy management system using smart metering," Applied Energy, Elsevier, vol. 280(C).
    11. Karol Bot & Laura Aelenei & Maria da Glória Gomes & Carlos Santos Silva, 2020. "Performance Assessment of a Building Integrated Photovoltaic Thermal System in Mediterranean Climate—A Numerical Simulation Approach," Energies, MDPI, vol. 13(11), pages 1-25, June.
    12. Yin, Linfei & Luo, Shikui & Ma, Chenxiao, 2021. "Expandable depth and width adaptive dynamic programming for economic smart generation control of smart grids," Energy, Elsevier, vol. 232(C).
    13. Son, Daewoong & Yeung, Ronald W., 2017. "Optimizing ocean-wave energy extraction of a dual coaxial-cylinder WEC using nonlinear model predictive control," Applied Energy, Elsevier, vol. 187(C), pages 746-757.
    14. Helena Martín & Jordi de la Hoz & Arnau Aliana & Sergio Coronas & José Matas, 2021. "Analysis of the Net Metering Schemes for PV Self-Consumption in Denmark," Energies, MDPI, vol. 14(7), pages 1-22, April.
    15. Oyediran, Damilare & Thakur, Jagruti & Khalid, Mutayab & Baskar, Ashish Guhan, 2024. "Electrification of marinas in Stockholm: Optimizing charging infrastructure for electric boats," Energy, Elsevier, vol. 305(C).
    16. Nielsen, Tore Bach & Lund, Henrik & Østergaard, Poul Alberg & Duic, Neven & Mathiesen, Brian Vad, 2021. "Perspectives on energy efficiency and smart energy systems from the 5th SESAAU2019 conference," Energy, Elsevier, vol. 216(C).
    17. Christian Pfeiffer & Markus Puchegger & Claudia Maier & Ina V. Tomaschitz & Thomas P. Kremsner & Lukas Gnam, 2020. "A Case Study of Socially-Accepted Potentials for the Use of End User Flexibility by Home Energy Management Systems," Sustainability, MDPI, vol. 13(1), pages 1-19, December.
    18. Ani Trstenjak & Saša Žiković & Hoda Mansour, 2020. "Making Nautical Tourism Greener in the Mediterranean," Sustainability, MDPI, vol. 12(16), pages 1-15, August.
    19. Dawid Jozwiak & Jayakrishnan Radhakrishna Pillai & Pavani Ponnaganti & Birgitte Bak-Jensen & Jan Jantzen, 2021. "Optimising Energy Flexibility of Boats in PV-BESS Based Marina Energy Systems," Energies, MDPI, vol. 14(12), pages 1-24, June.
    20. Bustos, Roberto & Marín, Luis G. & Navas-Fonseca, Alex & Reyes-Chamorro, Lorenzo & Sáez, Doris, 2023. "Hierarchical energy management system for multi-microgrid coordination with demand-side management," Applied Energy, Elsevier, vol. 342(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3838-:d:390279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.