Building Suitable Datasets for Soft Computing and Machine Learning Techniques from Meteorological Data Integration: A Case Study for Predicting Significant Wave Height and Energy Flux
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Raúl Cascajo & Emilio García & Eduardo Quiles & Antonio Correcher & Francisco Morant, 2019. "Integration of Marine Wave Energy Converters into Seaports: A Case Study in the Port of Valencia," Energies, MDPI, vol. 12(5), pages 1-24, February.
- Adrienn Dineva & Amir Mosavi & Sina Faizollahzadeh Ardabili & Istvan Vajda & Shahaboddin Shamshirband & Timon Rabczuk & Kwok-Wing Chau, 2019. "Review of Soft Computing Models in Design and Control of Rotating Electrical Machines," Energies, MDPI, vol. 12(6), pages 1-28, March.
- Roberta Di Bari & Rafael Horn & Björn Nienborg & Felix Klinker & Esther Kieseritzky & Felix Pawelz, 2020. "The Environmental Potential of Phase Change Materials in Building Applications. A Multiple Case Investigation Based on Life Cycle Assessment and Building Simulation," Energies, MDPI, vol. 13(12), pages 1-30, June.
- Guo, Yabin & Wang, Jiangyu & Chen, Huanxin & Li, Guannan & Liu, Jiangyan & Xu, Chengliang & Huang, Ronggeng & Huang, Yao, 2018. "Machine learning-based thermal response time ahead energy demand prediction for building heating systems," Applied Energy, Elsevier, vol. 221(C), pages 16-27.
- Lo, Chin Kim & Lim, Yun Seng & Rahman, Faidz Abd, 2015. "New integrated simulation tool for the optimum design of bifacial solar panel with reflectors on a specific site," Renewable Energy, Elsevier, vol. 81(C), pages 293-307.
- Manfren, Massimiliano & Nastasi, Benedetto & Groppi, Daniele & Astiaso Garcia, Davide, 2020. "Open data and energy analytics - An analysis of essential information for energy system planning, design and operation," Energy, Elsevier, vol. 213(C).
- Crowley, S. & Porter, R. & Taunton, D.J. & Wilson, P.A., 2018. "Modelling of the WITT wave energy converter," Renewable Energy, Elsevier, vol. 115(C), pages 159-174.
- Nguyen, Trinh Hoang & Prinz, Andreas & Friisø, Trond & Nossum, Rolf & Tyapin, Ilya, 2013. "A framework for data integration of offshore wind farms," Renewable Energy, Elsevier, vol. 60(C), pages 150-161.
- Qi He & Cheng Zha & Wei Song & Zengzhou Hao & Yanling Du & Antonio Liotta & Cristian Perra, 2020. "Improved Particle Swarm Optimization for Sea Surface Temperature Prediction," Energies, MDPI, vol. 13(6), pages 1-18, March.
- Liliana Rusu, 2015. "Assessment of the Wave Energy in the Black Sea Based on a 15-Year Hindcast with Data Assimilation," Energies, MDPI, vol. 8(9), pages 1-19, September.
- Erfan Amini & Danial Golbaz & Fereidoun Amini & Meysam Majidi Nezhad & Mehdi Neshat & Davide Astiaso Garcia, 2020. "A Parametric Study of Wave Energy Converter Layouts in Real Wave Models," Energies, MDPI, vol. 13(22), pages 1-23, November.
- Cornejo-Bueno, L. & Nieto-Borge, J.C. & García-Díaz, P. & Rodríguez, G. & Salcedo-Sanz, S., 2016. "Significant wave height and energy flux prediction for marine energy applications: A grouping genetic algorithm – Extreme Learning Machine approach," Renewable Energy, Elsevier, vol. 97(C), pages 380-389.
- Dorado-Moreno, M. & Cornejo-Bueno, L. & Gutiérrez, P.A. & Prieto, L. & Hervás-Martínez, C. & Salcedo-Sanz, S., 2017. "Robust estimation of wind power ramp events with reservoir computing," Renewable Energy, Elsevier, vol. 111(C), pages 428-437.
- Ali, Mumtaz & Prasad, Ramendra, 2019. "Significant wave height forecasting via an extreme learning machine model integrated with improved complete ensemble empirical mode decomposition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 281-295.
- Martin De Jong & Thomas Hoppe & Negar Noori, 2019. "City Branding, Sustainable Urban Development and the Rentier State. How Do Qatar, Abu Dhabi and Dubai Present Themselves in the Age of Post Oil and Global Warming?," Energies, MDPI, vol. 12(9), pages 1-26, April.
- Kumar Shivam & Jong-Chyuan Tzou & Shang-Chen Wu, 2020. "Multi-Objective Sizing Optimization of a Grid-Connected Solar–Wind Hybrid System Using Climate Classification: A Case Study of Four Locations in Southern Taiwan," Energies, MDPI, vol. 13(10), pages 1-30, May.
- Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Seyed Milad Mousavi & Majid Ghasemi & Mahsa Dehghan Manshadi & Amir Mosavi, 2021. "Deep Learning for Wave Energy Converter Modeling Using Long Short-Term Memory," Mathematics, MDPI, vol. 9(8), pages 1-16, April.
- Gómez-Orellana, A.M. & Guijo-Rubio, D. & Gutiérrez, P.A. & Hervás-Martínez, C., 2022. "Simultaneous short-term significant wave height and energy flux prediction using zonal multi-task evolutionary artificial neural networks," Renewable Energy, Elsevier, vol. 184(C), pages 975-989.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gao, Ruobin & Li, Ruilin & Hu, Minghui & Suganthan, Ponnuthurai Nagaratnam & Yuen, Kum Fai, 2023. "Dynamic ensemble deep echo state network for significant wave height forecasting," Applied Energy, Elsevier, vol. 329(C).
- Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Jamei, Mehdi & Yaseen, Zaher Mundher, 2023. "Ensemble robust local mean decomposition integrated with random forest for short-term significant wave height forecasting," Renewable Energy, Elsevier, vol. 205(C), pages 731-746.
- Daniel Clemente & Felipe Teixeira-Duarte & Paulo Rosa-Santos & Francisco Taveira-Pinto, 2023. "Advancements on Optimization Algorithms Applied to Wave Energy Assessment: An Overview on Wave Climate and Energy Resource," Energies, MDPI, vol. 16(12), pages 1-28, June.
- Zheng, Zihao & Ali, Mumtaz & Jamei, Mehdi & Xiang, Yong & Abdulla, Shahab & Yaseen, Zaher Mundher & Farooque, Aitazaz A., 2023. "Multivariate data decomposition based deep learning approach to forecast one-day ahead significant wave height for ocean energy generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
- Foteinis, Spyros, 2022. "Wave energy converters in low energy seas: Current state and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Yang, Shaobo & Deng, Zegui & Li, Xingfei & Zheng, Chongwei & Xi, Lintong & Zhuang, Jucheng & Zhang, Zhenquan & Zhang, Zhiyou, 2021. "A novel hybrid model based on STL decomposition and one-dimensional convolutional neural networks with positional encoding for significant wave height forecast," Renewable Energy, Elsevier, vol. 173(C), pages 531-543.
- Huang, Weinan & Dong, Sheng, 2021. "Improved short-term prediction of significant wave height by decomposing deterministic and stochastic components," Renewable Energy, Elsevier, vol. 177(C), pages 743-758.
- González-Cabrera, Nestor & Ortiz-Bejar, Jose & Zamora-Mendez, Alejandro & Arrieta Paternina, Mario R., 2021. "On the Improvement of representative demand curves via a hierarchical agglomerative clustering for power transmission network investment," Energy, Elsevier, vol. 222(C).
- Mahdavi-Meymand, Amin & Sulisz, Wojciech, 2024. "Development of pyramid neural networks for prediction of significant wave height for renewable energy farms," Applied Energy, Elsevier, vol. 362(C).
- Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Sankaran, Adarsh & Deo, Ravinesh C. & Xiao, Fuyuan & Zhu, Shuyu, 2021. "Advanced extreme learning machines vs. deep learning models for peak wave energy period forecasting: A case study in Queensland, Australia," Renewable Energy, Elsevier, vol. 177(C), pages 1031-1044.
- Rana Muhammad Adnan Ikram & Xinyi Cao & Kulwinder Singh Parmar & Ozgur Kisi & Shamsuddin Shahid & Mohammad Zounemat-Kermani, 2023. "Modeling Significant Wave Heights for Multiple Time Horizons Using Metaheuristic Regression Methods," Mathematics, MDPI, vol. 11(14), pages 1-24, July.
- Penalba, Markel & Aizpurua, Jose Ignacio & Martinez-Perurena, Ander & Iglesias, Gregorio, 2022. "A data-driven long-term metocean data forecasting approach for the design of marine renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Ali, Mumtaz & Prasad, Ramendra & Xiang, Yong & Deo, Ravinesh C., 2020. "Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Amal A. Al-Shargabi & Abdulbasit Almhafdy & Dina M. Ibrahim & Manal Alghieth & Francisco Chiclana, 2021. "Tuning Deep Neural Networks for Predicting Energy Consumption in Arid Climate Based on Buildings Characteristics," Sustainability, MDPI, vol. 13(22), pages 1-20, November.
- Vanchinathan Kumarasamy & Valluvan KarumanchettyThottam Ramasamy & Gokul Chandrasekaran & Gnanavel Chinnaraj & Padhmanabhaiyappan Sivalingam & Neelam Sanjeev Kumar, 2023. "A review of integer order PID and fractional order PID controllers using optimization techniques for speed control of brushless DC motor drive," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(4), pages 1139-1150, August.
- Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
- Bonaiuto, M. & Mosca, O. & Milani, A. & Ariccio, S. & Dessi, F. & Fornara, F., 2024. "Beliefs about technological and contextual features drive biofuels’ social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
- Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
- Muideen Adegoke & Alaka Hafiz & Saheed Ajayi & Razak Olu-Ajayi, 2022. "Application of Multilayer Extreme Learning Machine for Efficient Building Energy Prediction," Energies, MDPI, vol. 15(24), pages 1-21, December.
More about this item
Keywords
environmental prediction; renewable energy resource evaluation; meteorological data; reanalysis data; marine energy; soft computing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:2:p:468-:d:481800. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.