IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-030-22788-3_4.html
   My bibliography  Save this book chapter

Dynamic Energy Management

In: Large Scale Optimization in Supply Chains and Smart Manufacturing

Author

Listed:
  • Nicholas Moehle

    (Stanford University)

  • Enzo Busseti

    (Stanford University)

  • Stephen Boyd

    (Stanford University)

  • Matt Wytock

    (Gridmatic Inc.)

Abstract

We present a unified method, based on convex optimization, for managing the power produced and consumed by a network of devices over time. We start with the simple setting of optimizing power flows in a static network, and then proceed to the case of optimizing dynamic power flows, i.e., power flows that change with time over a horizon. We leverage this to develop a real-time control strategy, model predictive control, which at each time step solves a dynamic power flow optimization problem, using forecasts of future quantities such as demands, capacities, or prices, to choose the current power flow values. Finally, we consider a useful extension of model predictive control that explicitly accounts for uncertainty in the forecasts. We mirror our framework with an object-oriented software implementation, an open-source Python library for planning and controlling power flows at any scale. We demonstrate our method with various examples. Appendices give more detail about the package, and describe some basic but very effective methods for constructing forecasts from historical data.

Suggested Citation

  • Nicholas Moehle & Enzo Busseti & Stephen Boyd & Matt Wytock, 2019. "Dynamic Energy Management," Springer Optimization and Its Applications, in: Jesús M. Velásquez-Bermúdez & Marzieh Khakifirooz & Mahdi Fathi (ed.), Large Scale Optimization in Supply Chains and Smart Manufacturing, pages 69-126, Springer.
  • Handle: RePEc:spr:spochp:978-3-030-22788-3_4
    DOI: 10.1007/978-3-030-22788-3_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayu Cheng & Dongliang Duan & Xiang Cheng & Liuqing Yang & Shuguang Cui, 2021. "Adaptive Control for Energy Exchange with Probabilistic Interval Predictors in Isolated Microgrids," Energies, MDPI, vol. 14(2), pages 1-23, January.
    2. Jiayu Cheng & Dongliang Duan & Xiang Cheng & Liuqing Yang & Shuguang Cui, 2020. "Probabilistic Microgrid Energy Management with Interval Predictions," Energies, MDPI, vol. 13(12), pages 1-23, June.
    3. Guillermo Angeris & Akshay Agrawal & Alex Evans & Tarun Chitra & Stephen Boyd, 2021. "Constant Function Market Makers: Multi-Asset Trades via Convex Optimization," Papers 2107.12484, arXiv.org.
    4. Shane Barratt & Stephen Boyd, 2020. "Multi-Period Liability Clearing via Convex Optimal Control," Papers 2005.09066, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-030-22788-3_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.