IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7971-d690743.html
   My bibliography  Save this article

How to Reach the New Green Deal Targets: Analysing the Necessary Burden Sharing within the EU Using a Multi-Model Approach

Author

Listed:
  • Felix Kattelmann

    (Institute of Energy Economics and Rational Energy Use (IER), University of Stuttgart, 70565 Stuttgart, Germany)

  • Jonathan Siegle

    (Institute of Energy Economics and Rational Energy Use (IER), University of Stuttgart, 70565 Stuttgart, Germany)

  • Roland Cunha Montenegro

    (Institute of Energy Economics and Rational Energy Use (IER), University of Stuttgart, 70565 Stuttgart, Germany)

  • Vera Sehn

    (Institute of Energy Economics and Rational Energy Use (IER), University of Stuttgart, 70565 Stuttgart, Germany)

  • Markus Blesl

    (Institute of Energy Economics and Rational Energy Use (IER), University of Stuttgart, 70565 Stuttgart, Germany)

  • Ulrich Fahl

    (Institute of Energy Economics and Rational Energy Use (IER), University of Stuttgart, 70565 Stuttgart, Germany)

Abstract

The Green Deal of the European Union defines extremely ambitious climate targets for 2030 (−55% emissions compared to 1990) and 2050 (−100%), which go far beyond the current goals that the EU member states have agreed on thus far. The question of which sectors contribute how much has already been discussed, but is far from decided, while the question of which countries shoulder how much of the tightened reduction targets has hardly been discussed. We want to contribute significantly to answering these policy questions by analysing the necessary burden sharing within the EU from both an energy system and an overall macroeconomic perspective. For this purpose, we use the energy system model TIMES PanEU and the computational general equilibrium model NEWAGE. Our results show that excessively strong targets for the Emission Trading System (ETS) in 2030 are not system-optimal for achieving the 55% overall target, reductions should be made in such a way that an emissions budget ratio of 39 (ETS sector) to 61 (Non-ETS sector) results. Economically weaker regions would have to reduce their CO 2 emissions until 2030 by up to 33% on top of the currently decided targets in the Effort Sharing Regulation, which leads to higher energy system costs as well as losses in gross domestic product (GDP). Depending on the policy scenario applied, GDP losses in the range of −0.79% and −1.95% relative to baseline can be found for single EU regions. In the long-term, an equally strict mitigation regime for all countries in 2050 is not optimal from a system perspective; total system costs would be higher by 1.5%. Instead, some countries should generate negative net emissions to compensate for non-mitigable residual emissions from other countries.

Suggested Citation

  • Felix Kattelmann & Jonathan Siegle & Roland Cunha Montenegro & Vera Sehn & Markus Blesl & Ulrich Fahl, 2021. "How to Reach the New Green Deal Targets: Analysing the Necessary Burden Sharing within the EU Using a Multi-Model Approach," Energies, MDPI, vol. 14(23), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7971-:d:690743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7971/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7971/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brigitte Knopf & Yen-Heng Henry Chen & Enrica De Cian & Hannah Förster & Amit Kanudia & Ioanna Karkatsouli & Ilkka Keppo & Tiina Koljonen & Katja Schumacher & Detlef P. Van Vuuren, 2013. "Beyond 2020 — Strategies And Costs For Transforming The European Energy System," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 4(supp0), pages 1-38.
    2. Marta Victoria & Kun Zhu & Tom Brown & Gorm B. Andresen & Martin Greiner, 2020. "Early decarbonisation of the European energy system pays off," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
    4. Pinar Korkmaz & Roland Cunha Montenegro & Dorothea Schmid & Markus Blesl & Ulrich Fahl, 2020. "On the Way to a Sustainable European Energy System: Setting Up an Integrated Assessment Toolbox with TIMES PanEU as the Key Component," Energies, MDPI, vol. 13(3), pages 1-36, February.
    5. Gunnar Luderer & Zoi Vrontisi & Christoph Bertram & Oreane Y. Edelenbosch & Robert C. Pietzcker & Joeri Rogelj & Harmen Sytze Boer & Laurent Drouet & Johannes Emmerling & Oliver Fricko & Shinichiro Fu, 2018. "Residual fossil CO2 emissions in 1.5–2 °C pathways," Nature Climate Change, Nature, vol. 8(7), pages 626-633, July.
    6. Simoes, Sofia & Nijs, Wouter & Ruiz, Pablo & Sgobbi, Alessandra & Thiel, Christian, 2017. "Comparing policy routes for low-carbon power technology deployment in EU – an energy system analysis," Energy Policy, Elsevier, vol. 101(C), pages 353-365.
    7. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2010. "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied Energy, Elsevier, vol. 87(4), pages 1059-1082, April.
    8. Jäger-Waldau, Arnulf & Kougias, Ioannis & Taylor, Nigel & Thiel, Christian, 2020. "How photovoltaics can contribute to GHG emission reductions of 55% in the EU by 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    9. Pietzcker, Robert C. & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," Applied Energy, Elsevier, vol. 293(C).
    10. Babonneau, Frédéric & Haurie, Alain & Vielle, Marc, 2018. "Welfare implications of EU Effort Sharing Decision and possible impact of a hard Brexit," Energy Economics, Elsevier, vol. 74(C), pages 470-489.
    11. Pete Smith & Steven J. Davis & Felix Creutzig & Sabine Fuss & Jan Minx & Benoit Gabrielle & Etsushi Kato & Robert B. Jackson & Annette Cowie & Elmar Kriegler & Detlef P. van Vuuren & Joeri Rogelj & Ph, 2016. "Biophysical and economic limits to negative CO2 emissions," Nature Climate Change, Nature, vol. 6(1), pages 42-50, January.
    12. Pao-Yu Oei, Thorsten Burandt, Karlo Hainsch, Konstantin Löffler and Claudia Kemfert, 2020. "Lessons from Modeling 100% Renewable Scenarios Using GENeSYS-MOD," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1), pages 103-120.
    13. Pietzcker, Robert & Osorio, Sebastian & Rodrigues, Renato, 2021. "Tightening EU ETS targets in line with the European Green Deal: Impacts on the decarbonization of the EU power sector," EconStor Preprints 222579, ZBW - Leibniz Information Centre for Economics, revised 2021.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kattelmann, Felix & Marmullaku, Drin & Blesl, Markus & Hufendiek, Kai, 2023. "Opportunities for the German gas grid by using synthetic fuels from an energy system perspective," Energy Policy, Elsevier, vol. 181(C).
    2. Panagiotis Fragkos & Pelopidas Siskos, 2022. "Energy Systems Analysis and Modelling towards Decarbonisation," Energies, MDPI, vol. 15(6), pages 1-4, March.
    3. Lukáš Rečka & Vojtěch Máca & Milan Ščasný, 2023. "Green Deal and Carbon Neutrality Assessment of Czechia," Energies, MDPI, vol. 16(5), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finke, Jonas & Bertsch, Valentin, 2022. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," MPRA Paper 115504, University Library of Munich, Germany.
    2. Scharf, Hendrik & Möst, Dominik, 2024. "Gas power — How much is needed on the road to carbon neutrality?," Energy Policy, Elsevier, vol. 187(C).
    3. Price, James & Keppo, Ilkka & Dodds, Paul E., 2023. "The role of new nuclear power in the UK's net-zero emissions energy system," Energy, Elsevier, vol. 262(PA).
    4. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    5. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    6. Osorio, Sebastian & Tietjen, Oliver & Pahle, Michael & Pietzcker, Robert C. & Edenhofer, Ottmar, 2021. "Reviewing the Market Stability Reserve in light of more ambitious EU ETS emission targets," Energy Policy, Elsevier, vol. 158(C).
    7. Nagel, Niels Oliver & Böhringer, Christoph & Rosendahl, Knut Einar & Bolkesjø, Torjus Folsland, 2023. "Impacts of green deal policies on the Nordic power market," Utilities Policy, Elsevier, vol. 80(C).
    8. Bogdanov, Dmitrii & Oyewo, Ayobami Solomon & Breyer, Christian, 2023. "Hierarchical approach to energy system modelling: Complexity reduction with minor changes in results," Energy, Elsevier, vol. 273(C).
    9. Gils, Hans Christian & Gardian, Hedda & Schmugge, Jens, 2021. "Interaction of hydrogen infrastructures with other sector coupling options towards a zero-emission energy system in Germany," Renewable Energy, Elsevier, vol. 180(C), pages 140-156.
    10. Gils, Hans Christian & Gardian, Hedda & Kittel, Martin & Schill, Wolf-Peter & Zerrahn, Alexander & Murmann, Alexander & Launer, Jann & Fehler, Alexander & Gaumnitz, Felix & van Ouwerkerk, Jonas & Bußa, 2022. "Modeling flexibility in energy systems — comparison of power sector models based on simplified test cases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    11. Zhong, Meirui & Zhang, Rui & Ren, Xiaohang, 2023. "The time-varying effects of liquidity and market efficiency of the European Union carbon market: Evidence from the TVP-SVAR-SV approach," Energy Economics, Elsevier, vol. 123(C).
    12. Tan, Xiujie & Sun, Qian & Wang, Meiji & Se Cheong, Tsun & Yan Shum, Wai & Huang, Jinpeng, 2022. "Assessing the effects of emissions trading systems on energy consumption and energy mix," Applied Energy, Elsevier, vol. 310(C).
    13. Xin Zhao & Bryan K. Mignone & Marshall A. Wise & Haewon C. McJeon, 2024. "Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Martina Ricci & Marcello Benvenuto & Stefano Gino Mosele & Roberto Pacciani & Michele Marconcini, 2022. "Predicting the Impact of Compressor Flexibility Improvements on Heavy-Duty Gas Turbines for Minimum and Base Load Conditions," Energies, MDPI, vol. 15(20), pages 1-14, October.
    15. Dong, Kangyin & Yang, Senmiao & Wang, Jianda & Nepal, Rabindra & Jamasb, Tooraj, 2024. "Does Geopolitical Risk Accelerate Climate Vulnerability? New Evidence from the European Green Deal," Working Papers 15-2024, Copenhagen Business School, Department of Economics.
    16. Qu, Chunzi & Bang, Rasmus Noss, 2024. "European Grid Development Modeling and Analysis: Established Frameworks, Research Trends, and Future Opportunities," Discussion Papers 2024/11, Norwegian School of Economics, Department of Business and Management Science.
    17. Dai, Hancheng & Fujimori, Shinichiro & Silva Herran, Diego & Shiraki, Hiroto & Masui, Toshihiko & Matsuoka, Yuzuru, 2017. "The impacts on climate mitigation costs of considering curtailment and storage of variable renewable energy in a general equilibrium model," Energy Economics, Elsevier, vol. 64(C), pages 627-637.
    18. Hänsel, Martin C. & Franks, Max & Kalkuhl, Matthias & Edenhofer, Ottmar, 2022. "Optimal carbon taxation and horizontal equity: A welfare-theoretic approach with application to German household data," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    19. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    20. Pashchenko, Dmitry & Mustafin, Ravil & Karpilov, Igor, 2022. "Ammonia-fired chemically recuperated gas turbine: Thermodynamic analysis of cycle and recuperation system," Energy, Elsevier, vol. 252(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7971-:d:690743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.