IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i22p7799-d684700.html
   My bibliography  Save this article

High-Capacity Cells and Batteries for Electric Vehicles

Author

Listed:
  • Lluc Canals Casals

    (Research Group on Engineering Projects (GIIP), Department of Projects and Construction Engineering, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain)

  • Marcel Macarulla

    (Group of Construction Research and Innovation (GRIC), Department of Project and Construction Engineering, Universitat Politècnica de Catalunya, C/Colom, 11, Ed. TR5, 08222 Barcelona, Spain)

  • Alberto Gómez-Núñez

    (Singular Projects Unit, Eurecat-Centre Tecnologic de Catalunya, Av. Universitat Autònoma, 23, 08290 Cerdanyola del Valles, Spain)

Abstract

The automotive sector is rapidly accelerating its transformation towards electric mobility, and electric vehicle (EV) sales have been increasing year after year since the beginning of the decade [...]

Suggested Citation

  • Lluc Canals Casals & Marcel Macarulla & Alberto Gómez-Núñez, 2021. "High-Capacity Cells and Batteries for Electric Vehicles," Energies, MDPI, vol. 14(22), pages 1-2, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7799-:d:684700
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/22/7799/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/22/7799/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Katharina Wöhrl & Christian Geisbauer & Christoph Nebl & Susanne Lott & Hans-Georg Schweiger, 2021. "Crashed Electric Vehicle Handling and Recommendations—State of the Art in Germany," Energies, MDPI, vol. 14(4), pages 1-21, February.
    2. Annika Ahlberg Tidblad & Kristina Edström & Guiomar Hernández & Iratxe de Meatza & Imanol Landa-Medrano & Jordi Jacas Biendicho & Lluís Trilla & Maarten Buysse & Marcos Ierides & Beatriz Perez Horno &, 2021. "Future Material Developments for Electric Vehicle Battery Cells Answering Growing Demands from an End-User Perspective," Energies, MDPI, vol. 14(14), pages 1-26, July.
    3. Yash Kotak & Carlos Marchante Fernández & Lluc Canals Casals & Bhavya Satishbhai Kotak & Daniel Koch & Christian Geisbauer & Lluís Trilla & Alberto Gómez-Núñez & Hans-Georg Schweiger, 2021. "End of Electric Vehicle Batteries: Reuse vs. Recycle," Energies, MDPI, vol. 14(8), pages 1-15, April.
    4. Christian Geisbauer & Katharina Wöhrl & Daniel Koch & Gudrun Wilhelm & Gerhard Schneider & Hans-Georg Schweiger, 2021. "Comparative Study on the Calendar Aging Behavior of Six Different Lithium-Ion Cell Chemistries in Terms of Parameter Variation," Energies, MDPI, vol. 14(11), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marian Bulla & Christopher Schmandt & Stefan Kolling & Thomas Kisters & Elham Sahraei, 2022. "An Experimental and Numerical Study on Charged 21700 Lithium-Ion Battery Cells under Dynamic and High Mechanical Loads," Energies, MDPI, vol. 16(1), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    2. Lázaro V. Cremades & Lluc Canals Casals, 2022. "Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative," Energies, MDPI, vol. 15(23), pages 1-12, December.
    3. Jay N. Meegoda & Sarvagna Malladi & Isabel C. Zayas, 2022. "End-of-Life Management of Electric Vehicle Lithium-Ion Batteries in the United States," Clean Technol., MDPI, vol. 4(4), pages 1-13, November.
    4. Emanuele Michelini & Patrick Höschele & Florian Ratz & Michael Stadlbauer & Werner Rom & Christian Ellersdorfer & Jörg Moser, 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects," Energies, MDPI, vol. 16(6), pages 1-21, March.
    5. Sebastian Grzesiak & Adam Sulich, 2022. "Car Engines Comparative Analysis: Sustainable Approach," Energies, MDPI, vol. 15(14), pages 1-15, July.
    6. Arne Jeppe & Heike Proff & Max Eickhoff, 2023. "Economic Potentials of Ecologically Attractive Multi-Life Products—The Example of Lithium-Ion Batteries," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    7. Antônio Rufino Júnior, Carlos & Sanseverino, Eleonora Riva & Gallo, Pierluigi & Koch, Daniel & Schweiger, Hans-Georg & Zanin, Hudson, 2022. "Blockchain review for battery supply chain monitoring and battery trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    8. Lluís Trilla & Lluc Canals Casals & Jordi Jacas & Pol Paradell, 2022. "Dual Extended Kalman Filter for State of Charge Estimation of Lithium–Sulfur Batteries," Energies, MDPI, vol. 15(19), pages 1-14, September.
    9. Yash Kotak & Carlos Marchante Fernández & Lluc Canals Casals & Bhavya Satishbhai Kotak & Daniel Koch & Christian Geisbauer & Lluís Trilla & Alberto Gómez-Núñez & Hans-Georg Schweiger, 2021. "End of Electric Vehicle Batteries: Reuse vs. Recycle," Energies, MDPI, vol. 14(8), pages 1-15, April.
    10. Christodoulos Katis & Athanasios Karlis, 2023. "Evolution of Equipment in Electromobility and Autonomous Driving Regarding Safety Issues," Energies, MDPI, vol. 16(3), pages 1-34, January.
    11. Maria Cecília Costa Lima & Luana Pereira Pontes & Andrea Sarmento Maia Vasconcelos & Washington de Araujo Silva Junior & Kunlin Wu, 2022. "Economic Aspects for Recycling of Used Lithium-Ion Batteries from Electric Vehicles," Energies, MDPI, vol. 15(6), pages 1-19, March.
    12. Bertha Maya Sopha & Dwi Megah Purnamasari & Sholeh Ma’mun, 2022. "Barriers and Enablers of Circular Economy Implementation for Electric-Vehicle Batteries: From Systematic Literature Review to Conceptual Framework," Sustainability, MDPI, vol. 14(10), pages 1-23, May.

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7799-:d:684700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.